Academic Journal

Analytic self-similar solutions of the Kardar-Parisi-Zhang interface growing equation with various noise terms

التفاصيل البيبلوغرافية
العنوان: Analytic self-similar solutions of the Kardar-Parisi-Zhang interface growing equation with various noise terms
المؤلفون: Barna, Imre F., Bognár, Gabriella, Guedda, Mohammed, Mátyás, László, Hriczó, Krisztián
المصدر: Mathematical Modelling and Analysis; Vol 25 No 2 (2020); 241-256 ; 1648-3510 ; 1392-6292
بيانات النشر: VILNIUS TECH Press Technika
سنة النشر: 2020
مصطلحات موضوعية: self-similar solution, KPZ equation, Gaussian noise, Lorentzian noise, special functions, Heun functions
الوصف: The one-dimensional Kardar-Parisi-Zhang dynamic interface growth equation with the self-similar ansatz is analyzed. As a new feature additional analytic terms are added. From the mathematical point of view, these can be considered as various noise distribution functions. Six different cases were investigated among others Gaussian, Lorentzian, white or even pink noise. Analytic solutions are evaluated and analyzed for all cases. All results are expressible with various special functions like Kummer, Heun, Whittaker or error functions showing a very rich mathematical structure with some common general characteristics.
نوع الوثيقة: article in journal/newspaper
وصف الملف: application/pdf
اللغة: English
Relation: http://journals.vgtu.lt/index.php/MMA/article/view/10459/9724; http://journals.vgtu.lt/index.php/MMA/article/view/10459
DOI: 10.3846/mma.2020.10459
الاتاحة: http://journals.vgtu.lt/index.php/MMA/article/view/10459
https://doi.org/10.3846/mma.2020.10459
Rights: Copyright (c) 2020 The Author(s). Published by Vilnius Gediminas Technical University. ; http://creativecommons.org/licenses/by/4.0
رقم الانضمام: edsbas.661A232F
قاعدة البيانات: BASE