GENERALIZED LANGEVIN AND NOSÉ-HOOVER PROCESSES ABSORBED AT THE BOUNDARY OF A METASTABLE DOMAIN

التفاصيل البيبلوغرافية
العنوان: GENERALIZED LANGEVIN AND NOSÉ-HOOVER PROCESSES ABSORBED AT THE BOUNDARY OF A METASTABLE DOMAIN
المؤلفون: Guillin, Arnaud, Lu, D, I, Nectoux, Boris, Wu, Liming
المساهمون: Laboratoire de Mathématiques Blaise Pascal (LMBP), Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA), Dalian University of Technology, Harbin Institute of Technology (HIT), ANR-19-CE40-0010,QuAMProcs,Analyse Quantitative de Processus Metastables(2019), ANR-23-CE40-0003,CONVIVIALITY,Convegence et interactions via Analyse et Probabilités(2023)
المصدر: https://hal.science/hal-04519725 ; 2024.
بيانات النشر: HAL CCSD
سنة النشر: 2024
المجموعة: HAL Clermont Auvergne (Université Blaise Pascal Clermont-Ferrand / Université d'Auvergne)
مصطلحات موضوعية: Molecular dynamics, metastability, Quasi-stationary distribution, Generalized Langevin Dynamics, Nosé-Hoover, Langevin Dynamics, [MATH.MATH-PR]Mathematics [math]/Probability [math.PR]
الوصف: In this paper, we prove in a very weak regularity setting existence and uniqueness of quasi-stationary distributions as well as exponential conver- gence towards the quasi-stationary distribution for the generalized Langevin and the Nosé-Hoover processes, two processes which are widely used in molecular dynamics. The case of singular potentials is considered. With the techniques used in this work, we are also able to greatly improve existing results on quasi-stationary distributions for the kinetic Langevin process to a weak regularity setting.
نوع الوثيقة: report
اللغة: English
Relation: hal-04519725; https://hal.science/hal-04519725; https://hal.science/hal-04519725/document; https://hal.science/hal-04519725/file/Generalized%20Langevin%20Nose%20Hoover%20QSD%20loc-Lip.pdf
الاتاحة: https://hal.science/hal-04519725
https://hal.science/hal-04519725/document
https://hal.science/hal-04519725/file/Generalized%20Langevin%20Nose%20Hoover%20QSD%20loc-Lip.pdf
Rights: info:eu-repo/semantics/OpenAccess
رقم الانضمام: edsbas.6473B33F
قاعدة البيانات: BASE