Academic Journal
Connecting firm's web scraped textual content to body of science:Utilizing microsoft academic graph hierarchical topic modeling
العنوان: | Connecting firm's web scraped textual content to body of science:Utilizing microsoft academic graph hierarchical topic modeling |
---|---|
المؤلفون: | Hajikhani, Arash, Suominen, Arho, Ashouri, Sajad, Pukelis, Lukas, Schubert, Torben, Notten, Ad, Cunningham, Scott |
المصدر: | Hajikhani , A , Suominen , A , Ashouri , S , Pukelis , L , Schubert , T , Notten , A & Cunningham , S 2022 , ' Connecting firm's web scraped textual content to body of science : Utilizing microsoft academic graph hierarchical topic modeling ' , MethodsX , vol. 9 , 101650 . https://doi.org/10.1016/j.mex.2022.101650 |
سنة النشر: | 2022 |
المجموعة: | Maastricht University Research Publications |
مصطلحات موضوعية: | atira/keywords/jel_classifications/o32, o32 - Management of Technological Innovation and R&D, atira/keywords/jel_classifications/o31, o31 - Innovation and Invention: Processes and Incentives, atira/keywords/jel_classifications/o34, o34 - Intellectual Property Rights, Natural language processing, Economic classification scheme, Knowledge transformation, Web scraping |
الوصف: | This paper demonstrates a method to transform and link textual information scraped from companies' websites to the scientific body of knowledge. The method illustrates the benefit of Natural Language Processing (NLP) in creating links between established economic classification systems with novel and agile constructs that new data sources enable. Therefore, we experimented on the European classification of economic activities (known as NACE) on sectoral and company levels. We established a connection with Microsoft Academic Graph hierarchical topic modeling based on companies' website content. Central to the operationalization of our method are a web scraping process, NLP and a data transformation/linkage procedure. |
نوع الوثيقة: | article in journal/newspaper |
اللغة: | English |
DOI: | 10.1016/j.mex.2022.101650 |
الاتاحة: | https://cris.maastrichtuniversity.nl/en/publications/dded6a30-af5e-4794-9fb8-6983836fa1f9 https://doi.org/10.1016/j.mex.2022.101650 |
Rights: | info:eu-repo/semantics/openAccess |
رقم الانضمام: | edsbas.6375AB5B |
قاعدة البيانات: | BASE |
DOI: | 10.1016/j.mex.2022.101650 |
---|