Academic Journal

Numerical approximation of solution derivatives of singularly peprturbed parabolic problems of convection-difffusion type

التفاصيل البيبلوغرافية
العنوان: Numerical approximation of solution derivatives of singularly peprturbed parabolic problems of convection-difffusion type
المؤلفون: Gracia Lozano, José Luis, O'Riordan, Eugene
سنة النشر: 2016
المجموعة: Digital Repository of University of Zaragoza (ZAGUAN)
الوصف: Numerical approximations to the solution of a linear singularly perturbed parabolic convection-diffusion problem are generated using a backward Euler method in time and an upwinded finite difference operator in space on a piecewise-uniform Shishkin mesh. A proof is given to show first order convergence of these numerical approximations in an appropriately weighted C^1$-norm. Numerical results are given to illustrate the theoretical error bounds.
نوع الوثيقة: article in journal/newspaper
وصف الملف: application/pdf
اللغة: English
Relation: info:eu-repo/grantAgreement/ES/MEC/MTM2010-16917; http://zaguan.unizar.es/record/64444
DOI: 10.1090/mcom/2998
الاتاحة: http://zaguan.unizar.es/record/64444
https://doi.org/10.1090/mcom/2998
Rights: All rights reserved ; http://www.europeana.eu/rights/rr-f/
رقم الانضمام: edsbas.6317FC1
قاعدة البيانات: BASE