Challenges in Data Preservation for AI and ML Systems

التفاصيل البيبلوغرافية
العنوان: Challenges in Data Preservation for AI and ML Systems
المؤلفون: Tonkin, Emma L., Tourte, Gregory J. L.
المساهمون: Klein, Maike, Krupka, Daniel, Winter, Cornelia, Gergeleit, Martin, Martin, Ludger
بيانات النشر: Gesellschaft für Informatik e.V.
سنة النشر: 2024
مصطلحات موضوعية: data preservation, data management, artificial intelligence, machine learning, best practices
الوصف: The management and preservation of machine learning (ML) and artificial intelligence (AI) data is increasingly a concern for research institutions, as well as for institutions and industry organisations making use of this type of data and method. This paper summarises key issues in this area, presenting the case that there are significant benefits to the industry in developing best practices and joint standards in this area, and identifying the benefits of this approach, as well as highlighting risks and a current paucity of best practice in the area.
نوع الوثيقة: conference object
وصف الملف: application/pdf
اللغة: English
Relation: INFORMATIK 2024; Lecture Notes in Informatics (LNI) - Proceedings, Volume P-352; https://dl.gi.de/handle/20.500.12116/45197
DOI: 10.18420/inf2024_38
الاتاحة: https://dl.gi.de/handle/20.500.12116/45197
https://hdl.handle.net/20.500.12116/45197
https://doi.org/10.18420/inf2024_38
رقم الانضمام: edsbas.5F08575D
قاعدة البيانات: BASE