Academic Journal

Modelling and eliciting expert knowledge with fictitious data

التفاصيل البيبلوغرافية
العنوان: Modelling and eliciting expert knowledge with fictitious data
المؤلفون: François Billy, Nicolas Bousquet, Gilles Celeux, Inria Futurs, Équipe Select, Université Paris-sud Orsay
المساهمون: The Pennsylvania State University CiteSeerX Archives
المصدر: http://nbousque.free.fr/Docs/preprints/preprint4.pdf.
سنة النشر: 2005
المجموعة: CiteSeerX
الوصف: Considering reliability models In a Bayesian context, we propose an approach where experts opinions are supposed to come from fictitious data. Acting in such a way allows the analyst to weight the importance of the expert opinion in regard to the actual sample size in a sensible and reliable way. The control of experts knowledge becomes a control of the Fisher information on the reliability model parameters. Thus, the comparison between Feedback Experience Data (FED) and expert data through the reliability model and the prior distribution is easy and makes simple the calibration of the hyperparameters prior distribution to control the importance of expert contribution compared to the information provided by the observed sample. The presented approach is exemplified with Weibull models. 1
نوع الوثيقة: text
وصف الملف: application/pdf
اللغة: English
Relation: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.475.175; http://nbousque.free.fr/Docs/preprints/preprint4.pdf
الاتاحة: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.475.175
http://nbousque.free.fr/Docs/preprints/preprint4.pdf
Rights: Metadata may be used without restrictions as long as the oai identifier remains attached to it.
رقم الانضمام: edsbas.5EDA491B
قاعدة البيانات: BASE