Academic Journal

A Distributed and Privacy-Preserving Random Forest Evaluation Scheme with Fine Grained Access Control

التفاصيل البيبلوغرافية
العنوان: A Distributed and Privacy-Preserving Random Forest Evaluation Scheme with Fine Grained Access Control
المؤلفون: Yang Zhou, Hua Shen, Mingwu Zhang
المصدر: Symmetry; Volume 14; Issue 2; Pages: 415
بيانات النشر: Multidisciplinary Digital Publishing Institute
سنة النشر: 2022
المجموعة: MDPI Open Access Publishing
مصطلحات موضوعية: privacy-preserving, robustness, fine grained access control, random forest, ensemble learning
الوصف: Random forest is a simple and effective model for ensemble learning with wide potential applications. Implementation of random forest evaluations while preserving privacy for the source data is demanding but also challenging. In this paper, we propose a practical and fault-tolerant privacy-preserving random forest evaluation scheme based on asymmetric encryption. The user can use asymmetric encryption to encrypt the data outsourced to the cloud platform and specify who can access the final evaluation results. After receiving the encrypted inputs from the user, the cloud platform evaluates via a random forest model and outputs the aggregated results where only the designated recipient can decrypt them. Threat analyses prove that the proposed scheme achieves the desirable security properties, such as correctness, confidentiality and robustness. Moreover, efficiency analyses demonstrate that the scheme is practical for real-world applications.
نوع الوثيقة: text
وصف الملف: application/pdf
اللغة: English
Relation: Computer and Engineering Science and Symmetry/Asymmetry; https://dx.doi.org/10.3390/sym14020415
DOI: 10.3390/sym14020415
الاتاحة: https://doi.org/10.3390/sym14020415
Rights: https://creativecommons.org/licenses/by/4.0/
رقم الانضمام: edsbas.5E924DE7
قاعدة البيانات: BASE