Academic Journal

Classification of skin lesion images with deep learning approaches

التفاصيل البيبلوغرافية
العنوان: Classification of skin lesion images with deep learning approaches
المؤلفون: Bayram, Buket, Kulavuz, Bahadır, Ertuğrul, Berkay, Bayram, Bülent, Bakırman, Tolga, Çakar, Tuna, Doğan, Metehan
المساهمون: Çakar, Tuna
بيانات النشر: University of Latvia
سنة النشر: 2022
المجموعة: MEF University Institutional Repository (DSpace@MEF)
مصطلحات موضوعية: Deep Learning, Image classification, ISIC 2019, ResNet50, VGG16
الوصف: Skin cancer is one of the most dangerous cancer types in the world. Like any other cancer type, early detection is the key factor for the patient's recovery. Integration of artificial intelligence with medical image processing can aid to decrease misdiagnosis. The purpose of the article is to show that deep learning-based image classification can aid doctors in the healthcare field for better diagnosis of skin lesions. VGG16 and ResNet50 architectures were chosen to examine the effect of CNN networks on the classification of skin cancer types. For the implementation of these networks, the ISIC 2019 Challenge has been chosen due to the richness of data. As a result of the experiments, confusion matrices were obtained and it was observed that ResNet50 architecture achieved 91.23% accuracy and VGG16 architecture 83.89% accuracy. The study shows that deep learning methods can be sufficiently exploited for skin lesion image classification. © 2022 Baltic Journal of Modern Computing. All rights reserved. ; WOS:000821052300011 ; 2-s2.0-85133124398 ; Emerging Sources Citation Index ; Article; Proceedings Paper ; Uluslararası işbirliği ile yapılmayan - HAYIR ; July ; 2022 ; YÖK - 2021-22
نوع الوثيقة: article in journal/newspaper
وصف الملف: application/pdf
اللغة: English
تدمد: 2255-8950
2255-8942
Relation: Baltic Journal of Modern Computing; Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı; Bayram, B., Kulavuz, B., Ertugrul, B., Bayram, B., Bakirman, T., Cakar, T., & Doğan, M. (2022). Classification of Skin Lesion Images with Deep Learning Approaches. Baltic Journal of Modern Computing, 10(2), pp. 241-250. https://doi.org/10.22364/bjmc.2022.10.2.10; https://doi.org/10.22364/bjmc.2022.10.2.10; https://hdl.handle.net/20.500.11779/1804; 10; 241; 250; N/A; Q3
DOI: 10.22364/bjmc.2022.10.2.10
الاتاحة: https://hdl.handle.net/20.500.11779/1804
https://doi.org/10.22364/bjmc.2022.10.2.10
Rights: info:eu-repo/semantics/openAccess
رقم الانضمام: edsbas.5C8584DD
قاعدة البيانات: BASE
الوصف
تدمد:22558950
22558942
DOI:10.22364/bjmc.2022.10.2.10