Academic Journal

A machine-learning-based epistemic modeling framework for textile antenna design

التفاصيل البيبلوغرافية
العنوان: A machine-learning-based epistemic modeling framework for textile antenna design
المؤلفون: De Witte, Duygu, Spina, Domenico, De Ridder, Simon, Grassi, Flavia, Rogier, Hendrik, Vande Ginste, Dries
المصدر: IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS ; ISSN: 1536-1225 ; ISSN: 1548-5757
سنة النشر: 2019
المجموعة: Ghent University Academic Bibliography
مصطلحات موضوعية: Technology and Engineering, POLYNOMIAL CHAOS, MATHEMATICAL-THEORY, UNCERTAINTY, Bayesian optimization (BO), epistemic uncertainty, fuzzy variables, (FVs), Gaussian process (GP) textile antenna
الوصف: A novel machine-learning-based framework to evaluate the effect of design parameters affected by epistemic uncertainty on the performance of textile antennas is presented in this letter. In particular, epistemic variations are characterized in the framework of possibility theory, which is combined with Bayesian optimization to accurately and efficiently perform uncertainty quantification. A suitable application example validates the proposed method.
نوع الوثيقة: article in journal/newspaper
وصف الملف: application/pdf
اللغة: English
Relation: https://biblio.ugent.be/publication/8638548; http://hdl.handle.net/1854/LU-8638548; http://dx.doi.org/10.1109/LAWP.2019.2933306; https://biblio.ugent.be/publication/8638548/file/8638549
DOI: 10.1109/LAWP.2019.2933306
الاتاحة: https://biblio.ugent.be/publication/8638548
http://hdl.handle.net/1854/LU-8638548
https://doi.org/10.1109/LAWP.2019.2933306
https://biblio.ugent.be/publication/8638548/file/8638549
Rights: No license (in copyright) ; info:eu-repo/semantics/restrictedAccess
رقم الانضمام: edsbas.5BB820B8
قاعدة البيانات: BASE
الوصف
DOI:10.1109/LAWP.2019.2933306