Highly-Adaptive Mixed-Precision MAC Unit for Smart and Low-Power Edge Computing

التفاصيل البيبلوغرافية
العنوان: Highly-Adaptive Mixed-Precision MAC Unit for Smart and Low-Power Edge Computing
المؤلفون: Devic, Guillaume, France-Pillois, Maxime, Salles, Jérémie, Sassatelli, Gilles, Gamatié, Abdoulaye
المساهمون: ADAptive Computing (ADAC), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
المصدر: NEWCAS 2021 - 19th IEEE International New Circuits and Systems Conference ; https://hal-lirmm.ccsd.cnrs.fr/lirmm-03241639 ; NEWCAS 2021 - 19th IEEE International New Circuits and Systems Conference, Jun 2021, Toulon (virtual), France. pp.1-4, ⟨10.1109/NEWCAS50681.2021.9462745⟩ ; https://newcas2021.univ-tln.fr/
بيانات النشر: HAL CCSD
سنة النشر: 2021
المجموعة: Université de Montpellier: HAL
مصطلحات موضوعية: Multiply-and-Accumulate units, MAC, Machine Learning, Edge-Computing, Quantization, [INFO.INFO-ES]Computer Science [cs]/Embedded Systems, [INFO.INFO-AR]Computer Science [cs]/Hardware Architecture [cs.AR]
جغرافية الموضوع: Toulon (virtual), France
الوصف: International audience ; Machine learning algorithms are compute-and memory-intensive. Their execution at the edge on resourceconstrained embedded systems is challenging. Data quantization, i.e. data bit-width reduction, contributes to reducing de-facto the memory bandwidth requirement. In order to best exploit this bit-width reduction, a prevailing approach consists of tailored hardware accelerators. Another approach relies on generalpurpose compute units with Single Instruction Multiple Data (SIMD) support for reduced data bit-width precision, as in ARM Cortex-M [1] or RISC-V based RI5CY [2] processors. However, such processors only handle a few predefined bit-width ranges, e.g. 8-bit and 16-bit only for the ARM SIMD. This paper proposes a flexible architecture of Multiply-and-Accumulate (MAC) unit allowing asymmetric multiplication for operand sizes in powers of 2, up to 32 bits. The synthesis of this architecture in 28nm FD-SOI technology shows 10% and 25% reduction in area and dynamic power respectively, compared to the RI5CY MAC unit. From the energy-efficiency point of view, up to 50% improvements are achieved.
نوع الوثيقة: conference object
اللغة: English
Relation: lirmm-03241639; https://hal-lirmm.ccsd.cnrs.fr/lirmm-03241639; https://hal-lirmm.ccsd.cnrs.fr/lirmm-03241639/document; https://hal-lirmm.ccsd.cnrs.fr/lirmm-03241639/file/NEWCAS_2021_Highly-Adaptive%20Mixed-Precision%20MAC%20Unit%20for%20Smart%20and%20Low-Power%20Edge%20Computing.pdf
DOI: 10.1109/NEWCAS50681.2021.9462745
الاتاحة: https://hal-lirmm.ccsd.cnrs.fr/lirmm-03241639
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03241639/document
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03241639/file/NEWCAS_2021_Highly-Adaptive%20Mixed-Precision%20MAC%20Unit%20for%20Smart%20and%20Low-Power%20Edge%20Computing.pdf
https://doi.org/10.1109/NEWCAS50681.2021.9462745
Rights: info:eu-repo/semantics/OpenAccess
رقم الانضمام: edsbas.5B3664F
قاعدة البيانات: BASE
الوصف
DOI:10.1109/NEWCAS50681.2021.9462745