Academic Journal

Globally Existing Solutions to the Problem of Dirichlet for the Fractional 3D Poisson Equation

التفاصيل البيبلوغرافية
العنوان: Globally Existing Solutions to the Problem of Dirichlet for the Fractional 3D Poisson Equation
المؤلفون: Toshko Boev, Georgi Georgiev
المصدر: Fractal and Fractional; Volume 7; Issue 2; Pages: 180
بيانات النشر: Multidisciplinary Digital Publishing Institute
سنة النشر: 2023
المجموعة: MDPI Open Access Publishing
مصطلحات موضوعية: fractional laplacian, Riesz potentials, integral equations, unbounded domains, explicit solutions, regularity
الوصف: A general approach to solving the Dirichlet problem, both for bounded 3D domains and for their unbounded complements, in terms of the fractional (3D) Poisson equation, is presented. Lauren Schwartz class solutions are sought for tempered distributions. The solutions found are represented by a formula that contains the volume Riesz potential and the one-layer potential, the latter depending on the boundary data. Infinite regularity of fractional harmonic functions, analogous to the infinite smoothness of the classical harmonic functions, is also proved in the respective domain, no matter what the boundary conditions are. Other properties of the solutions, that are presumably of interest to mathematical physics, are also investigated. In particular, an intrinsic decay property, valid far from the common boundary, is shown.
نوع الوثيقة: text
وصف الملف: application/pdf
اللغة: English
Relation: General Mathematics, Analysis; https://dx.doi.org/10.3390/fractalfract7020180
DOI: 10.3390/fractalfract7020180
الاتاحة: https://doi.org/10.3390/fractalfract7020180
Rights: https://creativecommons.org/licenses/by/4.0/
رقم الانضمام: edsbas.5A4E98C6
قاعدة البيانات: BASE
الوصف
DOI:10.3390/fractalfract7020180