Academic Journal

Biologically inspired approaches to automated feature extraction and target recognition

التفاصيل البيبلوغرافية
العنوان: Biologically inspired approaches to automated feature extraction and target recognition
المؤلفون: Gail A. Carpenter, Siegfried Martens, Ennio Mingolla, Ogi J. Ogas, Chaitanya Sai
المساهمون: The Pennsylvania State University CiteSeerX Archives
المصدر: http://techlab.bu.edu/files/resources/articles_cns/carpenter_martens_mingolla_ogas_sai_2004.pdf.
سنة النشر: 2004
المجموعة: CiteSeerX
الوصف: Ongoing research at Boston University has produced computational models of biological vision and learning that embody a growing corpus of scientific data and predictions. Vision models perform long-range grouping and figure/ground segmentation, and memory models create attentionally controlled recognition codes that intrinsically combine bottom-up activation and top-down learned expectations. These two streams of research form the foundation of novel dynamically integrated systems for image understanding. Simulations using multispectral images illustrate road completion across occlusions in a cluttered scene and information fusion from input labels that are simultaneously inconsistent
نوع الوثيقة: text
وصف الملف: application/pdf
اللغة: English
Relation: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.385.7117; http://techlab.bu.edu/files/resources/articles_cns/carpenter_martens_mingolla_ogas_sai_2004.pdf
الاتاحة: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.385.7117
http://techlab.bu.edu/files/resources/articles_cns/carpenter_martens_mingolla_ogas_sai_2004.pdf
Rights: Metadata may be used without restrictions as long as the oai identifier remains attached to it.
رقم الانضمام: edsbas.5983C6BD
قاعدة البيانات: BASE