Academic Journal

Anticipate Manning’s Coefficient in Meandering Compound Channels

التفاصيل البيبلوغرافية
العنوان: Anticipate Manning’s Coefficient in Meandering Compound Channels
المؤلفون: Abinash Mohanta, Kanhu Charan Patra, Bibhuti Bhusan Sahoo
المصدر: Hydrology; Volume 5; Issue 3; Pages: 47
بيانات النشر: Multidisciplinary Digital Publishing Institute
سنة النشر: 2018
المجموعة: MDPI Open Access Publishing
مصطلحات موضوعية: doubly meandering compound channel, Group Method of Data Handling, multivariate adaptive regression spline, Manning’s roughness coefficient, support vector regression, discharge, error analysis, box and whisker plot
جغرافية الموضوع: agris
الوصف: Estimating Manning’s roughness coefficient ( n ) is one of the essential factors in predicting the discharge in a stream. Present research work is focused on prediction of Manning’s n in meandering compound channels by using the Group Method of Data Handling Neural Network (GMDH-NN) approach. The width ratio ( α ) , relative depth ( β ) , sinuosity ( s ) , Channel bed slope ( S o ) , and meander belt width ratio ( ω ) are specified as input parameters for the development of the model. The performance of GMDH-NN is evaluated with two different machine learning techniques, namely the support vector regression (SVR) and multivariate adaptive regression spline (MARS) with various statistical measures. Results indicate that the proposed GMDH-NN model predicts the Manning’s n satisfactorily as compared to the MARS and SVR model. This GMDH-NN approach can be useful for practical implementation as the prediction of Manning’s coefficient and subsequently discharge through Manning’s equation in the compound meandering channels are found to be quite adequate.
نوع الوثيقة: text
وصف الملف: application/pdf
اللغة: English
Relation: https://dx.doi.org/10.3390/hydrology5030047
DOI: 10.3390/hydrology5030047
الاتاحة: https://doi.org/10.3390/hydrology5030047
Rights: https://creativecommons.org/licenses/by/4.0/
رقم الانضمام: edsbas.580A85F2
قاعدة البيانات: BASE
الوصف
DOI:10.3390/hydrology5030047