Academic Journal

Convolutional neural network for identifying effective seismic force at a DRM layer for rapid reconstruction of SH ground motions

التفاصيل البيبلوغرافية
العنوان: Convolutional neural network for identifying effective seismic force at a DRM layer for rapid reconstruction of SH ground motions
المؤلفون: Maharjan, Shashwat, Guidio, Bruno, Jeong, Chanseok
المساهمون: National Science Foundation
المصدر: Earthquake Engineering & Structural Dynamics ; volume 53, issue 2, page 894-923 ; ISSN 0098-8847 1096-9845
بيانات النشر: Wiley
سنة النشر: 2023
المجموعة: Wiley Online Library (Open Access Articles via Crossref)
الوصف: We introduce a novel data‐informed convolutional neural network (CNN) approach that utilizes sparse ground motion measurements to accurately identify effective seismic forces in a truncated two‐dimensional (2D) domain. Namely, this paper presents the first prototype of a CNN capable of inferring domain reduction method (DRM) forces, equivalent to incident waves, across all nodes in the DRM layer. It achieves this from sparse measurement data in a multidimensional setting, even in the presence of incoherent incident waves. The method is applied to shear (SH) waves propagating into a domain truncated by a wave‐absorbing boundary condition (WABC). By effectively training the CNN using input‐layer features (surface sensor measurements) and output‐layer features (effective forces at a DRM layer), we achieve significant reductions in processing time compared to PDE‐constrained optimization methods. The numerical experiments demonstrate the method's effectiveness and robustness in identifying effective forces, equivalent to incoherent incident waves, at a DRM layer.
نوع الوثيقة: article in journal/newspaper
اللغة: English
DOI: 10.1002/eqe.4049
الاتاحة: http://dx.doi.org/10.1002/eqe.4049
https://onlinelibrary.wiley.com/doi/am-pdf/10.1002/eqe.4049
https://onlinelibrary.wiley.com/doi/pdf/10.1002/eqe.4049
Rights: http://onlinelibrary.wiley.com/termsAndConditions#vor
رقم الانضمام: edsbas.57AA76E
قاعدة البيانات: BASE