Academic Journal

Structural and magnetic properties of disordered crystalline Fe50Mn25+xSn25-x alloys with x: -1.25, 0.0, 2.5, 5.0, 7.5 ; Propiedades estructuralesy magnéticas de aleaciones cristalinas desordenadas Fe50Mn25+xSn25-x con x: -1.25, 0.0, 2.5, 5.0, 7.5

التفاصيل البيبلوغرافية
العنوان: Structural and magnetic properties of disordered crystalline Fe50Mn25+xSn25-x alloys with x: -1.25, 0.0, 2.5, 5.0, 7.5 ; Propiedades estructuralesy magnéticas de aleaciones cristalinas desordenadas Fe50Mn25+xSn25-x con x: -1.25, 0.0, 2.5, 5.0, 7.5
المؤلفون: Pachín, Wilber, Peña, Víctor A., León, Misael, Rojas, Chachi, Medina, José J., Landauro, Carlos V., Quispe, Justiniano, Agüero, Jorge, Passamani, Edson C., Baggio-Saitovitch, Elisa
المصدر: MOMENTO; No. 62 (2021); 43 - 62 ; MOMENTO; Núm. 62 (2021); 43 - 62 ; 2500-8013 ; 0121-4470
بيانات النشر: Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Física
سنة النشر: 2021
المجموعة: Universidad Nacional de Colombia: Portal de Revistas UN
مصطلحات موضوعية: 57Fe Mössbauer spectroscopy, 119Sn Mössbauer spectroscopy, disordered solid solutions, transferred magnetic hyperfine fields, Heusler alloys, Physics, Solid State Physics, espectroscopia Mössbauer del 57Fe, espectroscopia Mössbauer del 119Sn, soluciones sólidas desordenadas, campos hiperfinos magnéticos transferidos, aleaciones de Heusler, Física, Física del Estado Sólido
الوصف: Disordered crystalline Fe50Mn25+xSn25-x alloys, with x = -1.25, 0.0, 2.5, 5.0, 7.5 (close to the full-Heusler alloys), were arc-melted in a high purity argon atmosphere and the molten pellets were individually sealed in quartz tubes also under argon atmosphere. Subsequently, they were annealed at 1173 K for 4 days, being finally quenched in a bath with cold water. Structural and magnetic properties have systematically been studied using X-ray diffraction, 57Fe, and 119Sn Mössbauer spectroscopies, and magnetization measurements recorded at room temperature. Rietveld refinement of the X-ray diffraction patterns of the annealed samples with x = -1.25 and 0 has revealed the presence of two hexagonal crystallographic phases: (i) a chemically disordered solid solution identified as e-(Fe/Mn)3Sn (majority fraction) and (ii) the e-Fe5Sn3 intermetallic compound (minority fraction). For samples with x = 2.5, 5.0, and 7.5, the Rietveld analysis has only indicated the presence of a chemically disordered solid solution identified as e-(Fe/Mn)3(Sn/Fe/Mn). Although compositions of the Fe50Mn25+xSn25-x alloys are close to that of full-Heusler alloys, none of them has the expected L21 structure. The average crystallite sizes, estimated from the Williamson-Hall method, are in the range of 256-62 nm. The average sizes has gradually decreased as the x-content is increased. Mössbauer results have shown localized-type magnetism from Fe non-equivalent sites, and itinerant-like magnetism on 119Sn-probes. Magnetic hysteresis loops, recorded at 300 K for a maximum field of 2200 Oe, have indicated that the remanent and coercive fields have systematically decreased as the x-parameter has increased. Coercive fields are in the range for soft magnets (1-20 Oe). ; Aleaciones cristalinas desordenadas Fe50Mn25+xSn25-x, con x = -1.25, 0.0, 2.5, 5.0, 7.5, cercanas a las composiciones de Heusler-211, fueron preparadas por fusión en atmósfera inerte, subsecuentemente, sometidas a recocido térmico durante 4 días a 1173 K y, finalmente, enfriadas en ...
نوع الوثيقة: article in journal/newspaper
وصف الملف: application/pdf
اللغة: English
Relation: https://revistas.unal.edu.co/index.php/momento/article/view/87185/77624; T. Krenke, M. Acet, E.F. Wassermann, X. Moya, L. Mañosa, and A. Planes, Phys. Rev. B 72, 014412 (2005).; T. Krenke, E. Duman, M. Acet, E.F. Wassermann, X. Moya, L. Mañosa, and A. Planes, Nature Mater., 4, 450 (2005).; K. Koyama, T. Kanomata, R. Kainuma, K. Oikawa, K. Ishida, and K. Watanabe, Physica B, 383, 24 (2006).; P.J. Brown, A.P. Gandy, K. Ishida, R. Kainuma, T. Kanomata, K-U. Neumann, K. Oikawa, B. Ouladdiaf, and K.R.A. Ziebeck, J. Phys.: Condens. Matter, 18, 2249 (2006).; R. Kainuma, Y. Imano, W. Ito, H. Morito, Y. Sutou, K. Oikawa, A. Fujita, K. Ishida, S. Okamoto, O. Kitakami, and T. Kanomata, Appl. Phys. Lett., 88, 192513 (2006).; S. Aksoy, T. Krenke, M. Acet, E.F. Wassermann, X. Moya, L. Mañosa, and A. Planes, Appl. Phys. Lett., 91, 251915 (2007).; T. Krenke, E. Duman, M. Acet, X. Moya, L. Mañosa, and A. Planes, J. Appl. Phys., 102, 033903 (2007).; I. Galanakis, E. Şaşıoğlu, and K. Özdoğan, Phys. Rev. B 77, 214417 (2008).; R. Kainuma, K. Oikawa, W. Ito, Y. Sutou, T. Kanomata, and K. Ishida, J. Mater. Chem., 18, 1837 (2008).; E. Şaşıoğlu, L. M. Sandratskii, and P. Bruno, Phys. Rev. B 77, 064417 (2008).; A. L. Alves, E.C. Passamani1, V.P. Nascimento, A.Y. Takeuchi and C. Larica, J. Phys. D: Appl. Phys., 43, 345001 (2010).; E.C. Passamani, F. Xavier, E. Favre-Nicolin, C.Larica, A.Y. Takeuchi, I.L. Castro, and J. R. Proveti, J. Appl. Phys., 105, 033919 (2009).; S. Chatterjee, V.R. Singh, A.K. Deb, S. Giri, S.K. De, I. Dasgupta, S. Majumdar, J. Magn. Magn. Mater. 322, 102–107 (2010).; C.M. Hurd, S.P. McAlister, J. Magn. Magn. Mater. 61, 114 (1986).; E. Uhl, J. Solid State Chem. 43, 354 (1982).; S. Fujii, S. Ishida, S. Asano, J. Phys. Soc. Jpn 64, 185 (1995).; V.K. Jain, N. Lakshmi, V. Jain, A.K.Sijo, K. Venugopalan, AIP Conf. Proc. 1665, 130032 (2015).; V.K. Jain, N. Lakshmi, and R. Jain AIP Conf. Proc. 1953, 110007 (2018).; V.K. Jain, N. Lakshmi, R. Jain, and A.R. Chandra, J Supercond. Nov Magn., 32, 739 (2019).; E.C. Passamani, F. Xavier F, E. Favre-Nicolin E, C. Larica, A.Y. Takeuchi, I.L. Castro and J. R. Proveti J. Appl. Phys. 105, 033919 (2009).; https://revistas.unal.edu.co/index.php/momento/article/view/87185
الاتاحة: https://revistas.unal.edu.co/index.php/momento/article/view/87185
Rights: Derechos de autor 2020 MOMENTO ; https://creativecommons.org/licenses/by-nd/4.0
رقم الانضمام: edsbas.579AAD0D
قاعدة البيانات: BASE