Academic Journal

Machine Learning Methods Applied to the Prediction of Pseudo-nitzschia spp. Blooms in the Galician Rias Baixas (NW Spain)

التفاصيل البيبلوغرافية
العنوان: Machine Learning Methods Applied to the Prediction of Pseudo-nitzschia spp. Blooms in the Galician Rias Baixas (NW Spain)
المؤلفون: Bellas Aláez, Francisco Miguel, Torres Palenzuela, Jesus M., Spyrakos, Evangelos, Gonzalez Vilas, Luis
بيانات النشر: Zenodo
سنة النشر: 2021
المجموعة: Zenodo
مصطلحات موضوعية: harmful algal blooms (HABs), Pseudo-nitzschia spp, Galician Rias Baixas, coastal embayment, support vector machines (SVMs), neural networks (NNs), Random Forest (RF), AdaBoost
الوصف: This work presents new prediction models based on recent developments in machine learning methods, such as Random Forest (RF) and AdaBoost, and compares them with more classical approaches, i.e., support vector machines (SVMs) and neural networks (NNs). The models predictPseudo-nitzschiaspp. blooms in the GalicianRias Baixas. This work builds on a previous study by the authors (doi.org/10.1016/j.pocean.2014.03.003) but uses an extended database (from 2002 to 2012) and new algorithms. Our results show that RF and AdaBoost provide better prediction results compared to SVMs and NNs, as they show improved performance metrics and a better balance between sensitivity and specificity. Classical machine learning approaches show higher sensitivities, but at a cost of lower specificity and higher percentages of false alarms (lower precision). These results seem to indicate a greater adaptation of new algorithms (RF and AdaBoost) to unbalanced datasets. Our models could be operationally implemented to establish a short-term prediction system
نوع الوثيقة: article in journal/newspaper
اللغة: unknown
Relation: https://zenodo.org/communities/eu; https://doi.org/10.3390/ijgi10040199; oai:zenodo.org:4692676
DOI: 10.3390/ijgi10040199
الاتاحة: https://doi.org/10.3390/ijgi10040199
Rights: info:eu-repo/semantics/openAccess ; Creative Commons Attribution 4.0 International ; https://creativecommons.org/licenses/by/4.0/legalcode
رقم الانضمام: edsbas.571422A1
قاعدة البيانات: BASE