Academic Journal

A DEA-ANN framework based in Improved Grey Wolf Algorithm to evaluate the performance of container terminal.

التفاصيل البيبلوغرافية
العنوان: A DEA-ANN framework based in Improved Grey Wolf Algorithm to evaluate the performance of container terminal.
المؤلفون: Fri, Mouhsene, Douaioui, Kaoutar, Tetouani, Samir, Mabrouki, Charif, Semma, El Alami
المصدر: IOP Conference Series: Materials Science and Engineering ; volume 827, issue 1, page 012040 ; ISSN 1757-8981 1757-899X
بيانات النشر: IOP Publishing
سنة النشر: 2020
الوصف: Managing the performance of port container terminals is one of the major challenges in the supply chain management. In response to this challenge, we propose a new framework to assess managers in evaluating the global performance of operations in port container terminals. The new framework integrates the Data Envelopment Analysis (DEA) and Artificial Neural Network (ANN). The DEA is used to compute the efficient score of the system. In ANN, we use the improved grey wolf optimizer based on Levy’s flights to improve learning. In order to prove the efficiency of our model, we apply the framework in 2 ports container terminal: Tangier Med Port and Casablanca Port. The result is compared to standard algorithms and outperforms the cited algorithm in order to avoid local minima. The new trainer improved grey wolf optimizer is also evaluated using four known classification datasets and on three approximation functions datasets.
نوع الوثيقة: article in journal/newspaper
اللغة: unknown
DOI: 10.1088/1757-899x/827/1/012040
DOI: 10.1088/1757-899X/827/1/012040/pdf
DOI: 10.1088/1757-899X/827/1/012040
الاتاحة: http://dx.doi.org/10.1088/1757-899x/827/1/012040
https://iopscience.iop.org/article/10.1088/1757-899X/827/1/012040/pdf
https://iopscience.iop.org/article/10.1088/1757-899X/827/1/012040
Rights: http://creativecommons.org/licenses/by/3.0/ ; https://iopscience.iop.org/info/page/text-and-data-mining
رقم الانضمام: edsbas.56B2981F
قاعدة البيانات: BASE
الوصف
DOI:10.1088/1757-899x/827/1/012040