Academic Journal

Mechanical and tribological characteristics of nickel-rich CoCrCuxFeNi2 high entropy-alloys ; Механические и трибологические свойства высокоэнтропийных сплавов CoCrCuxFeNi2 с высоким содержанием никеля

التفاصيل البيبلوغرافية
العنوان: Mechanical and tribological characteristics of nickel-rich CoCrCuxFeNi2 high entropy-alloys ; Механические и трибологические свойства высокоэнтропийных сплавов CoCrCuxFeNi2 с высоким содержанием никеля
المؤلفون: A. D. Fedotov, S. K. Mukanov, B. Yu. Romanenko, P. A. Loginov, M. Ya. Bychkova, S. I. Rupasov, А. Д. Федотов, С. К. Муканов, Б. Ю. Романенко, П. А. Логинов, М. Я. Бычкова, С. И. Рупасов
المساهمون: The work was carried out with the financial support of the Russian Science Foundation (project № 22-79-10144). The authors express their gratitude to Dr. M.I. Petrzhik for assistance in studies of mechanical properties (hardness and elastic modulus)., Работа выполнена при финансовой поддержке Российского научного фонда (проект № 22-79-10144). Авторы выражают благодарность д.т.н. М.И. Петржику за помощь в исследовании механических свойств (твердость и модуль упругости).
المصدر: Izvestiya. Non-Ferrous Metallurgy; № 1 (2024); 55-69 ; Izvestiya Vuzov. Tsvetnaya Metallurgiya; № 1 (2024); 55-69 ; 2412-8783 ; 0021-3438
بيانات النشر: Kalvis
سنة النشر: 2024
المجموعة: Izvestiya Vuzov Tsvetnaya Metallurgiya (Proceedings of Higher Schools Nonferrous Metallurgy / Известия вузов. Цветная металлургия
مصطلحات موضوعية: растровая электронная микроскопия, high-entropy alloys, mechanical properties, wear resistance, heat treatment, transmission electron microscopy, scanning electron microscopy, высокоэнтропийные сплавы, механические свойства, износостойкость, термическая обработка, просвечивающая электронная микроскопия
الوصف: This research explores the potential to enhance the copper solubility limit in high-entropy alloys (HEAs) within the CoCrCuFeNi system by increasing the nickel content twofold and applying additional heat treatment. The CoCrCuxFeNi2 HEAs were synthesized through mechanical alloying of elemental powders followed by hot pressing. The study investigated the microstructure and phase composition of CoCrCuxFeNi2 HEAs in relation to varying copper concentrations (x = 0; 0.25; 0.5; 0.75; 1.0). The evaluation of the alloy matrix's chemical composition, which is based on the FCC solid solution, enabled the determination of copper solubility. It was found that doubling the nickel content, relative to the equiatomic ratio, facilitated the formation of HEAs with a homogenous FCC structure for copper concentrations up to x ≤ 0.75. Further heat treatment of these HEAs resulted in an enhanced copper solubility of up to 17.5 at.%. The mechanical and tribological properties of CoCrCuxFeNiy HEAs were also assessed, revealing significant improvements in tensile strength (ranging from 910 to 1045 MPa) and hardness (285–395 HV) for the CoCrCuxFeNi2 alloys. Despite the increased copper solubility limit, the heat treatment process caused a decline in mechanical properties by 35–50 %, attributed to grain size enlargement to 5.5 μm. The CoCrCu0.75FeNi2 and CoCrCuFeNi2 alloys exhibited the lowest wear rates when tested against Al2O3 counterbody, with wear rates of 1,58·10–5 and 1,48·10–5 mm3/(N·m), respectively. ; Работа посвящена изучению возможности повышения предела растворимости меди в высокоэнтропийных сплавах (ВЭС) системы CoCrCuFeNi путем двукратного увеличения концентрации никеля и проведения дополнительной термической обработки. ВЭС CoCrCuxFeNi2 изготовлены механическим легированием элементных порошковых смесей и их последующим горячим прессованием. Исследованы микроструктура и фазовый состав ВЭС CoCrCuxFeNi2 в зависимости от концентрации Cu (x = 0; 0,25; 0,5; 0,75; 1,0). Анализ химического состава матрицы сплава на основе ГЦК ...
نوع الوثيقة: article in journal/newspaper
وصف الملف: application/pdf
اللغة: Russian
English
Relation: https://cvmet.misis.ru/jour/article/view/1585/720; https://cvmet.misis.ru/jour/article/view/1585/727; Sanin V.N., Ikornikov D.M., Golosova O.A., Andreev D.E., Yukhvid V.I. Centrifugal metallothermic SHS of cast Co—Cr—Fe—Ni—Mn—(Х) alloys. Russian Journal of Non-Ferrous Metals. 2020;61(4):436—445. https://doi.org/10.3103/S1067821220040070; Sanin V.N., Ikornikov D.M., Golosova O.A., Andreev D.E., Yukhvid V.I. Centrifugal SHS metallurgy of cast Co— Cr—Fe—Ni—Mn high-entropy alloys strengthened by precipitates based on Mo and Nb borides and silicides. Physical Mesomechanics. 2021;24:692—700. https://doi.org/10.1134/S1029959921060072; Panina E.S., Yurchenko N.Y., Tozhibaev A.A., Mishunin M.V., Zherebtsov S.V., Stepanov N.D. A study of the structure and mechanical properties of Nb—Mo—Co—X (X = Hf, Zr, Ti) refractory high-entropy alloys. Physical Mesomechanics. 2023;26:666—677. https://doi.org/10.1134/S1029959923060061; Громов В.Е., Шляпова Ю.А., Коновалов С.В., Воробьев С.В., Перегудов О.А. Применение высокоэнтропийных сплавов. Известия высших учебных заведений. Черная металургия. 2021;64(10):747—754. https://doi.org/10.17073/0368-0797-2021-10-747-754; Jiaojiao Yia, Lin Yang, Mingqin Xu, Lu Wang. Investigation of a novel CoCrCuNiTi high entropy alloy on microstructure and mechanical properties. Russian Journal of Non-Ferrous Metals. 2021;62:197—205. https://doi.org/10.3103/S1067821221020073; Rao K.R., Alshgari R.A., Bahajjaj A.A.A., Chakraborty S., Sinha S.K. Effects of nano scale Y2O3 additions on microstructural stability and mechanical properties of equiatomic CoCrCuFeNi based high entropy alloys. Materials Chemistry and Physics. 2023;296:127325. https://doi.org/10.1016/j.matchemphys.2023.127325; Kuptsov K.A., Antonyuk M.N., Sheveyko A.N., Bondarev A.V., Ignatov S.G., Slukin P.V., Dwivedi P., Fraile A., Polcar T., Shtansky D.V. High-entropy Fe—Cr—Ni—Co—(Cu) coatings produced by vacuum electro-spark deposition for marine and coastal applications. Surface and Coatings Technology. 2023;453:129136. https://doi.org/10.1016/j.surfcoat.2022.129136; Huang K., Chen L., Lin X., Huang H., Tang S., Du F. Wear and corrosion resistance of Al 0.5 CoCrCuFeNi high-entropy alloy coating deposited on AZ91D magnesium alloy by laser cladding. Entropy. 2018;20(12):915. https://doi.org/10.3390/e20120915; Changqing Shu, Zhengjun Yao, Xiaolin Li, Wenbo Du, Xuewei Tao, Hemei Yang. Microstructure and wear mechanism of CoCrCuFeNiVx high entropy alloy by sintering and electron beam remelting. Physica B: Condensed Matter. 2022;638:413834. https://doi.org/10.1016/j.physb.2022.413834; Kamalakannan R., DineshKumar K., NarenRaj K. The sliding wear behavior of CrCuFeNi alloyed with various combinations of cobalt. Materials Today: Proceedings. 2022;50(5):1814—1817. https://doi.org/10.1016/j.matpr.2021.09.211; Verma A., Chauhan L., Kumar T.S., Singh Prashant Kumar, Dommeti Satya Gowtam, Thangaraju Shanmugasundaram. Laser cladding of CoCrCuFeNi and CoCrFeNi high-entropy alloys on DMR 249A steel: Corrosion, wear and antibacterial behaviour. The Journal of the Minerals, Metals and Materials Society (TMS). 2023;75(7):2701—2713. https://doi.org/10.1007/s11837-023-05861-z; Verma A., Tarate P., Abhyankar A.C., Mohape M.R., Gowtam D.S., Deshmukh V.P., Shanmugasundaram T. High temperature wear in CoCrFeNiCu x high entropy alloys: The role of Cu. Scripta Materialia. 2019;171:28—31. https://doi.org/10.1016/j.scriptamat.2018.10.007; Yubin Huang, Yongle Hu, Mingjun Zhang, Cong Mao, Yonggang Tong, Jian Zhang, Kangwei Li, Kaiming Wang. On the enhanced wear resistance of laser-clad CoCrCuFeNiTi x high-entropy alloy coatings at elevated temperature. Tribology International. 2022; 174:107767. https://doi.org/10.1016/j.triboint.2022.107767; Yang Gao, Haibo Xiao, Bin Liu, Yong Liu. Enhanced drilling performance of impregnated diamond bits by introducing a novel HEA binder phase. International Journal of Refractory Metals and Hard Materials. 2024;118:106449. https://doi.org/10.1016/j.ijrmhm.2023.106449; Loginov P.A., Fedotov A.D., Mukanov S.K., Manakova O.S., Zaitsev A.A., Akhmetov A.S., Rupasov S.I., Levashov E.A. Manufacturing of metal—diamond composites with high-strength CoCrCu x FeNi high-entropy alloy used as a binder. Materials. 2023;16(3):1285 https://doi.org/10.3390/ma16031285; Takeshi Nagase, Philip D. Rack, Joo Hyon Noh, Takeshi Egami. Insitu TEM observation of structural changes in nano-crystalline CoCrCuFeNi multicomponent high-entropy alloy (HEA) under fast electron irradiation by high voltage electron microscopy (HVEM). Intermetallics. 2015;59:32—42. https://doi.org/10.1016/j.intermet.2014.12.007; Mukanov S.K., Loginov P.A., Fedotov A.D., Bychkova M.Ya., Antonyuk M.N., Levashov E.A. The effect of copper on the microstructure, wear and corrosion resistance of CoCrCuFeNi high-entropy alloys manufactured by powder metallurgy. Materials. 2023;16(3):1178. https://doi.org/10.3390/ma16031178; Shkodich N.F., Kovalev I.D., Kuskov K.V., Kovalev D.Yu., Vergunova Yu.S., Scheck Yu.B., Vadchenko S.G., Politano O., Baras F., Rogachev A.S. Fast mechanical synthesis, structure evolution, and thermal stability of nanostructured CoCrFeNiCu high entropy alloy. Journal of Alloys and Compounds. 2022;893:161839. https://doi.org/10.1016/j.jallcom.2021.161839; Moghaddam A.O., Samodurova M.N., Pashkeev K., Doubenskaia M., Sova A., Trofimov E.A. A novel intermediate temperature self-lubricating CoCrCu 1-x FeNi x high entropy alloy fabricated by direct laser cladding. Tribology International. 2021;156:106857. https://doi.org/10.1016/j.triboint.2021.106857; Peng Jian, Li Zi-yong, Ji Xin-bo, Sun Yan-le, Fu Li-ming, Shan Ai-dang. Decomposition kinetics of carbon-doped FeCoCrNiMn high-entropy alloy at intermediate temperature. Transactions of Nonferrous Metals Society of China. 2020;30(7):1884—1894. https://doi.org/10.1016/S1003-6326(20)65347-X; Dabrowa J., Cieslak G., Stygar M., Mroczka K., Berent K., Kulik T., Danielewski M. Influence of Cu content on high temperature oxidation behavior of AlCoCrCu x FeNi high entropy alloys (x = 0; 0.5; 1). Intermetallics. 2017; 84:52—61. https://doi.org/10.1016/j.intermet.2016.12.015; Li Cheng, Xue Yun-fei, Hua Mu-tian, Cao Tang-qing, Ma Li-li, Wang Lu. Microstructure and mechanical properties of Al x Si 0.2 CrFeCoNiCu 1-x high-entropy alloys. Materials and Design. 2016;90:601—609. https://doi.org/10.1016/j.matdes.2015.11.013; Lin C.M., Tsai H.L. Equilibrium phase of high-entropy FeCoNiCrCu 0.5 alloy at elevated temperature. Journal of Alloys and Compounds. 2010;489(1):30—35. https://doi.org/10.1016/j.jallcom.2009.09.041; Lin C.M., Tsai H.-L. Effect of annealing treatment on microstructure and properties of high-entropy FeCoNiCrCu 0.5 alloy. Materials Chemistry and Physics. 2011;128(1-2):50—56. https://doi.org/10.1016/j.matchemphys.2011.02.022; Fangyan Liu, Qiang Song, Ruirun Chen, Canming Wang, Jiawei Sun. Effect of Co, Ni, Cu content on phase composition, microstructure and corrosion resistance of Co 1-x CrFeNi 1+x Cu y series high-entropy alloys. Vacuum. 2013;210:111830. https://doi.org/10.1016/j.vacuum.2023.111830; Zhu Z.G., Ma K.H., Wang Q., Shek C.H. Compositional dependence of phase formation and mechanical properties in three CoCrFeNi—(Mn/Al/Cu) high entropy alloys. Intermetallics. 2016;79:1—11. https://doi.org/10.1016/j.intermet.2016.09.003; Qiang Hu, Hai-ling Wang, Li-hua Qian, Liang-cai Zeng, Qiang Wang, Xin-wang Liu. Effects of Cu additions on microstructure and mechanical properties of as-cast CrFeCoNiCu x high-entropy alloy. Transactions of Nonferrous Metals Society of China. 2023;33(6):1803—1813. https://doi.org/10.1016/S1003-6326(23)66223-5; Du C., Hu L., Pan Q., Chen K., Zhou P., Wang G. Effect of Cu on the strengthening and embrittling of an FeCoNiCr—xCu HEA. Materials Science and Engineering: A. 2023;832:142413. https://doi.org/10.1016/j.msea.2021.142413; Fiocchi Jacopo, Casati Riccardo, Tuissi Ausonio, Biffi Carlo Alberto. Laser beam welding of CoCuFeMnNi high entropy alloy: Processing, microstructure, and mechanical properties. Advanced Engineering Materials. 2022;24(10):202200523. https://doi.org/10.1002/adem.202200523; Seung Min Oh, Sun Ig Hong. Microstructural stability and mechanical properties of equiatomic CoCrCuFeNi, CrCuFeMnNi, CoCrCuFeMn alloys. Materials Chemistry and Physics. 2018;210:120—125. https://doi.org/10.1016/j.matchemphys.2017.09.010; Fei Liang, Ao Meng, Yixing Sun, Zhaoshuo Chen, Zhouwen Jiang, Yaping Zhang, Yong Zhang, Yuntian Zhu, Xiang Chen. A novel wear-resistant Ni-based superalloy via high Cr-induced subsurface nanotwins and heterogeneous composite glaze layer at elevated temperatures. Tribology International. 2023;183:108383. https://doi.org/10.1016/j.triboint.2023.108383; Zhuo Cheng, Lu Yang, Zhikun Huang, Tian Wan, Mingyu Zhu, Fuzeng Ren. Achieving low wear in a μ-phase reinforced high-entropy alloy and associated subsurface microstructure evolution. Wear. 2021;474-475:203755. https://doi.org/10.1016/j.wear.2021.203755; Qiang Wang, Qiang Hu, Hailing Wang, Liangcai Zeng. Investigations on the microstructures and tribological behaviors of as-cast CrFeCoNiCu x high entropy alloys. Intermetallics. 2023;157:107886. https://doi.org/10.1016/j.intermet.2023.107886; https://cvmet.misis.ru/jour/article/view/1585
DOI: 10.17073/0021-3438-2024-1-55-69
الاتاحة: https://cvmet.misis.ru/jour/article/view/1585
https://doi.org/10.17073/0021-3438-2024-1-55-69
Rights: Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). ; Авторы, публикующие статьи в данном журнале, прилагают к рукописи статьи: 1) лицензионный договор на право опубликования на безвозмездной основе; 2) экспертное заключение от аффилированной организации на возможность публикации в открытой печати; 3) иллюстрации и таблицы.Лицензионный договор должен быть заполнен, подписан всеми авторами и приложен в отсканированном виде в формате pdf; экспертное заключение – в формате pdf.Название каждого файла должно быть написано на латинице и состоять из фамилии первого автора и типа документа (в формате doc, docx), например: Ivanov_paper.doc; Ivanov_figer.doc; Ivanov_agreement.pdf; Ivanov_ conclusion. pdf.Подробно «Правила направления рукописи в редакцию» размещены на сайте в разделе Правила для авторов.
رقم الانضمام: edsbas.55CBB26D
قاعدة البيانات: BASE
الوصف
DOI:10.17073/0021-3438-2024-1-55-69