Statistical inference for random T-tessellations models: application to agricultural landscape modeling.

التفاصيل البيبلوغرافية
العنوان: Statistical inference for random T-tessellations models: application to agricultural landscape modeling.
المؤلفون: Adamczyk-Chauvat, Katarzyna, Kassa, Mouna, Papaïx, Julien, Kiêu, Kiên, Stoica, Radu, S.
المساهمون: Université Paris-Saclay, Mathématiques et Informatique Appliquées du Génome à l'Environnement Jouy-En-Josas (MaIAGE), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA), Biostatistique et Processus Spatiaux (BioSP), Processus aléatoires spatio-temporels et leurs applications (PASTA), Inria Nancy - Grand Est, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut Élie Cartan de Lorraine (IECL), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Institut Élie Cartan de Lorraine (IECL), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Lancaster University, ANR-20-PCPA-0007,PheroSensor,Early detection of pest insects using pheromone receptor-based olfactory sensors(2020)
المصدر: 11th International Conference on Spatio-Temporal Modelling METMA XI
https://hal.inrae.fr/hal-04669756
11th International Conference on Spatio-Temporal Modelling METMA XI, Lancaster University, Jul 2024, Lancaster, United Kingdom
https://metmaxi.netlify.app/
بيانات النشر: CCSD
سنة النشر: 2024
المجموعة: Institut National de la Recherche Agronomique: ProdINRA
مصطلحات موضوعية: Gibbsian T-tessellation, Pseudolikelihood, Monte Carlo Maximum Likelihood, Global envelope test, Agricultural landscape, [STAT]Statistics [stat], [SDE]Environmental Sciences
جغرافية الموضوع: Lancaster, United Kingdom
الوصف: International audience ; The Gibbsian T-tessellation models allow the representation of a wide range of spatial patterns. In this talk we present statistical tools for these models and illustrate their application to the comparison of three agricultural landscapes in France. Model parameters are estimated via Monte Carlo Maximum Likelihood based on an adapted Metropolis-Hastings-Green dynamics. In order to reduce the computational costs, a pseudolikelihood estimate is used for the initialization of the likelihood optimization. Model assessment is based on global envelope tests applied to the set of functional statistics of tessellation.
نوع الوثيقة: conference object
اللغة: English
الاتاحة: https://hal.inrae.fr/hal-04669756
https://hal.inrae.fr/hal-04669756v1/document
https://hal.inrae.fr/hal-04669756v1/file/metmaShort.pdf
Rights: info:eu-repo/semantics/OpenAccess
رقم الانضمام: edsbas.55230B4E
قاعدة البيانات: BASE