Academic Journal
Study of some noncooperative linear elliptic systems
العنوان: | Study of some noncooperative linear elliptic systems |
---|---|
المؤلفون: | Djellit, Ali, Tas, Saadia |
بيانات النشر: | Institute of Mathematics, Academy of Sciences of the Czech Republic Matematický ústav AV ČR |
سنة النشر: | 2004 |
المجموعة: | DML-CZ (Czech Digital Mathematics Library) |
مصطلحات موضوعية: | keyword:Schrödinger’s operators, keyword:weighted Sobolev spaces, keyword:maximum principle, keyword:min-max formula, keyword:noncooperative systems, msc:35B50, msc:35D05, msc:35J55, msc:35P15, msc:46E35 |
الوصف: | summary:Using an approximation method, we show the existence of solutions for some noncooperative elliptic systems defined on an unbounded domain. |
نوع الوثيقة: | text |
وصف الملف: | application/pdf |
اللغة: | English |
تدمد: | 0862-7940 1572-9109 |
Relation: | mr:MR2059426; zbl:Zbl 1099.35032; reference:[1] R. A. Adams: Sobolev spaces.Academic Press, New York-San Francisco-London, 1978. Zbl 0347.46040, MR 0450957; reference:[2] K. J. Brown, C. Cosner, and J. Fleckinger: Principal eigenvalues for problems with indefinite weight functions on $\mathbb{R}^{N}$.Proc. Amer. Math. Soc. 109 (1990), 147–155. MR 1007489; reference:[3] L. Boccardo, J. Fleckinger-Pellé, and F. de Thélin: Existence of solutions for some nonlinear cooperative systems.Differential Integral Equations 7 (1994), 689–698. MR 1270098; reference:[4] L. Cardoulis: Problèmes elliptiques: Applications de la théorie spectrale et étude de systèmes, existence de solutions.PhD Thesis, Univ. des Sc. Sociales de Toulouse, 1997.; reference:[5] G. Caristi, E. Mitidieri: Maximum principles for a class of non-cooperative elliptic systems.Delft Progr. Rep. 14 (1990), 33–56. MR 1045316; reference:[6] D. G. Costa, C. A. Magalhães: A variational approach to noncooperative elliptic systems.Nonlinear Anal. 25 (1995), 699–715. MR 1341522, 10.1016/0362-546X(94)00180-P; reference:[7] A. Djellit: Valeurs propres de problèmes elliptiques indéfinis sur des ouverts non bornés de $\mathbb{R}^{N}$.PhD Thesis, U.P.S., Toulouse, 1992.; reference:[8] A. Djellit, J. Fleckinger: Valeurs propres de problèmes elliptiques.Boll. Unione Mat. Ital., VII. Ser. B7 (1993), 857–874. MR 1255651; reference:[9] A. Djellit, A. Yechoui: Existence and non-existence of a principal eigenvalue for some boundary value problems.Maghreb Math. Rev. 6 (1997), 29–37. MR 1489164; reference:[10] J. Fleckinger-Pellé, J. Hernández, F. de Thélin: Principe du maximum pour un système elliptique non linéaire.C.R. Acad. Sci. Paris Sér. I Math. 314 (1992), 665–668.; reference:[11] J. Fleckinger-Pellé, J. Hernández, and F. de Thélin: On maximum principle and existence of solutions for some cooperative elliptic systems.Differential Integral Equations 8 (1995), 69–85.; reference:[12] J. Fleckinger, J. Hernández, and F. de Thélin: A maximum principle for linear cooperative elliptic systems.In: Differential Equations with Applications to Mathematical Physics, W. F. Ames, E. M. Harrell, and J. V. Herod (eds.), Acad. Press, Boston, 1993, pp. 79–86. MR 1207142; reference:[13] D. G. de Figueiredo, E. Mitidieri: A maximum principle for an elliptic system and applications to a semilinear problem.SIAM J. Math. Anal. 17 (1986), 836–849. MR 0846392, 10.1137/0517060; reference:[14] D. G. de Figueiredo, E. Mitidieri: Maximum principle for cooperative elliptic systems.C.R. Acad. Sci. Paris Sér. I Math. 310 (1990), 49–52. MR 1044413; reference:[15] D. G. de Figueiredo, E. Mitidieri: Maximum principle for linear elliptic systems.Quaterno Matematico 177, Dip. Sc. Mat, Univ. Trieste, 1988.; reference:[16] J. Fleckinger-Pellé, H. Serag: Semilinear cooperative elliptic systems on $\mathbb{R}^{N}$.Rend. Mat. Appl. (7) 15 (1995), 89–108. MR 1330181; reference:[17] B. Hanouzet: Espaces de Sobolev avec poids, application au problème de Dirichlet dans un demi espace.Rend. Sem. Mat. Univ. Padova 46 (1971), 227–272. MR 0310417; reference:[18] M. H. Protter, H. F. Weinberger: Maximum Principles in Differential Equations.Prentice Hall, Englewood Cliffs, 1967. MR 0219861 |
الاتاحة: | http://hdl.handle.net/10338.dmlcz/134566 |
Rights: | access:Unrestricted ; rights:DML-CZ Czech Digital Mathematics Library, http://dml.cz/ ; rights:Institute of Mathematics AS CR, http://www.math.cas.cz/ ; conditionOfUse:http://dml.cz/use |
رقم الانضمام: | edsbas.532361CF |
قاعدة البيانات: | BASE |
تدمد: | 08627940 15729109 |
---|