Academic Journal

Integration of Image and Sensor Data for Improved Disease Detection in Peach Trees Using Deep Learning Techniques

التفاصيل البيبلوغرافية
العنوان: Integration of Image and Sensor Data for Improved Disease Detection in Peach Trees Using Deep Learning Techniques
المؤلفون: Kuiheng Chen, Jingjing Lang, Jiayun Li, Du Chen, Xuaner Wang, Junyu Zhou, Xuan Liu, Yihong Song, Min Dong
المصدر: Agriculture, Vol 14, Iss 6, p 797 (2024)
بيانات النشر: MDPI AG
سنة النشر: 2024
المجموعة: Directory of Open Access Journals: DOAJ Articles
مصطلحات موضوعية: deep learning in agriculture, peach disease detection and segmentation, image and sensor data fusion, tiny feature attention, precision agriculture, Agriculture (General), S1-972
الوصف: An innovative framework for peach tree disease recognition and segmentation is proposed in this paper, with the aim of significantly enhancing model performance in complex agricultural settings through deep learning techniques and data fusion strategies. The core innovations include a tiny feature attention mechanism backbone network, an aligned-head module, a Transformer-based semantic segmentation network, and a specially designed alignment loss function. The integration of these technologies not only optimizes the model’s ability to capture subtle disease features but also improves the efficiency of integrating sensor and image data, further enhancing the accuracy of the segmentation tasks. Experimental results demonstrate the superiority of this framework. For disease detection, the proposed method achieved a precision of 94%, a recall of 92%, and an accuracy of 92%, surpassing classical models like AlexNet, GoogLeNet, VGGNet, ResNet, and EfficientNet. In lesion segmentation tasks, the proposed method achieved a precision of 95%, a recall of 90%, and an mIoU of 94%, significantly outperforming models such as SegNet, UNet, and UNet++. The introduction of the aligned-head module and alignment loss function provides an effective solution for processing images lacking sensor data, significantly enhancing the model’s capability to process real agricultural image data. Through detailed ablation experiments, the study further validates the critical role of the aligned-head module and alignment loss function in enhancing model performance, particularly in the attention-head ablation experiment where the aligned-head configuration surpassed other configurations across all metrics, highlighting its key role in the overall framework. These experiments not only showcase the theoretical effectiveness of the proposed method but also confirm its practical value in agricultural disease management practices.
نوع الوثيقة: article in journal/newspaper
اللغة: English
تدمد: 2077-0472
Relation: https://www.mdpi.com/2077-0472/14/6/797; https://doaj.org/toc/2077-0472; https://doaj.org/article/4c9a4ecc8ee643068e85c9b5d1696ade
DOI: 10.3390/agriculture14060797
الاتاحة: https://doi.org/10.3390/agriculture14060797
https://doaj.org/article/4c9a4ecc8ee643068e85c9b5d1696ade
رقم الانضمام: edsbas.5274D9A4
قاعدة البيانات: BASE
الوصف
تدمد:20770472
DOI:10.3390/agriculture14060797