Academic Journal

Evaluating Task-Specific Augmentations in Self-Supervised Pre-Training for 3D Medical Image Analysis

التفاصيل البيبلوغرافية
العنوان: Evaluating Task-Specific Augmentations in Self-Supervised Pre-Training for 3D Medical Image Analysis
المؤلفون: Claessens, C. H.B., Hamm, J. J.M., Viviers, C. G.A., Nederend, J., Grünhagen, D. J., Tanis, P. J., de With, P. H.N., van der Sommen, F.
المساهمون: Colliot, Olivier, Mitra, Jhimli
المصدر: Claessens , C H B , Hamm , J J M , Viviers , C G A , Nederend , J , Grünhagen , D J , Tanis , P J , de With , P H N & van der Sommen , F 2024 , Evaluating Task-Specific Augmentations in Self-Supervised Pre-Training for 3D Medical Image Analysis . in O Colliot & J Mitra (eds) , Medical Imaging 2024: Image Processing : Image Processing . , 129261L , SPIE , Progress in Biomedical Optics and Imaging - Proceedings of SPIE , vol. 12926 , Medical Imaging 2024: Image Processing ....
بيانات النشر: SPIE
سنة النشر: 2024
الوصف: Self-supervised learning (SSL) has become a crucial approach for pre-training deep learning models in natural and medical image analysis. However, applying transformations designed for natural images to three-dimensional (3D) medical data poses challenges. This study explores the efficacy of specific augmentations in the context of self-supervised pre-training for volumetric medical images. A 3D non-contrastive framework is proposed for in-domain self-supervised pre-training on 3D gray-scale thorax CT data, incorporating four spatial and two intensity augmentations commonly used in 3D medical image analysis. The pre-trained models, adapted versions of ResNet-50 and Vision Transformer (ViT)-S, are evaluated on lung nodule classification and lung tumor segmentation tasks. The results indicate a significant impact of SSL, with a remarkable increase in AUC and DSC as compared to training from scratch. For classification, random scalings and random rotations play a fundamental role in achieving higher downstream performance, while intensity augmentations show limited contribution and may even degrade performance. For segmentation, random intensity histogram shifting enhances robustness, while other augmentations have marginal or negative impacts. These findings underscore the necessity of tailored data augmentations within SSL for medical imaging, emphasizing the importance of task-specific transformations for optimal model performance in complex 3D medical datasets.
نوع الوثيقة: article in journal/newspaper
اللغة: English
ردمك: 978-1-5106-7156-0
1-5106-7156-0
Relation: urn:ISBN:9781510671560
DOI: 10.1117/12.3000850
الاتاحة: https://pure.eur.nl/en/publications/5835c058-1548-4174-ae86-ab47b63c4728
https://doi.org/10.1117/12.3000850
http://www.scopus.com/inward/record.url?scp=85193503157&partnerID=8YFLogxK
Rights: info:eu-repo/semantics/closedAccess
رقم الانضمام: edsbas.52558B6A
قاعدة البيانات: BASE
الوصف
ردمك:9781510671560
1510671560
DOI:10.1117/12.3000850