Academic Journal

Nonparametric density estimation over complicated domains

التفاصيل البيبلوغرافية
العنوان: Nonparametric density estimation over complicated domains
المؤلفون: Ferraccioli F., Arnone E., Finos L., Ramsay J. O., Sangalli L. M.
المساهمون: Ferraccioli, F., Arnone, E., Finos, L., Ramsay, J. O., Sangalli, L. M.
بيانات النشر: Blackwell Publishing Ltd
سنة النشر: 2021
المجموعة: Padua Research Archive (IRIS - Università degli Studi di Padova)
مصطلحات موضوعية: differential regularization, finite element, functional data analysi, heat diffusion density estimator
الوصف: We propose a nonparametric method for density estimation over (possibly complicated) spatial domains. The method combines a likelihood approach with a regularization based on a differential operator. We demonstrate the good inferential properties of the method. Moreover, we develop an estimation procedure based on advanced numerical techniques, and in particular making use of finite elements. This ensures high computational efficiency and enables great flexibility. The proposed method efficiently deals with data scattered over regions having complicated shapes, featuring complex boundaries, sharp concavities or holes. Moreover, it captures very well complicated signals having multiple modes with different directions and intensities of anisotropy. We show the comparative advantages of the proposed approach over state of the art methods, in simulation studies and in an application to the study of criminality in the city of Portland, Oregon.
نوع الوثيقة: article in journal/newspaper
وصف الملف: ELETTRONICO
اللغة: English
Relation: info:eu-repo/semantics/altIdentifier/wos/WOS:000621111400001; volume:83; issue:2; firstpage:346; lastpage:368; numberofpages:23; journal:JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B STATISTICAL METHODOLOGY; https://hdl.handle.net/11577/3388565
DOI: 10.1111/rssb.12415
الاتاحة: https://hdl.handle.net/11577/3388565
https://doi.org/10.1111/rssb.12415
Rights: info:eu-repo/semantics/openAccess
رقم الانضمام: edsbas.50B839DD
قاعدة البيانات: BASE