Academic Journal

Artificial intelligence in medicine: mitigating risks and maximizing benefits via quality assurance, quality control, and acceptance testing

التفاصيل البيبلوغرافية
العنوان: Artificial intelligence in medicine: mitigating risks and maximizing benefits via quality assurance, quality control, and acceptance testing
المؤلفون: Mahmood, Usman, Shukla-Dave, Amita, Chan, Heang-Ping, Drukker, Karen, Samala, Ravi K, Chen, Quan, Vergara, Daniel, Greenspan, Hayit, Petrick, Nicholas, Sahiner, Berkman, Huo, Zhimin, Summers, Ronald M, Cha, Kenny H, Tourassi, Georgia, Deserno, Thomas M, Grizzard, Kevin T, Näppi, Janne J, Yoshida, Hiroyuki, Regge, Daniele, Mazurchuk, Richard, Suzuki, Kenji, Morra, Lia, Huisman, Henkjan, Armato, Samuel G, Hadjiiski, Lubomir
المساهمون: Mahmood, Usman, Shukla-Dave, Amita, Chan, Heang-Ping, Drukker, Karen, Samala, Ravi K, Chen, Quan, Vergara, Daniel, Greenspan, Hayit, Petrick, Nichola, Sahiner, Berkman, Huo, Zhimin, Summers, Ronald M, Cha, Kenny H, Tourassi, Georgia, Deserno, Thomas M, Grizzard, Kevin T, Näppi, Janne J, Yoshida, Hiroyuki, Regge, Daniele, Mazurchuk, Richard, Suzuki, Kenji, Morra, Lia, Huisman, Henkjan, Armato, Samuel G, Hadjiiski, Lubomir
بيانات النشر: Oxford Academics
سنة النشر: 2024
المجموعة: PORTO@iris (Publications Open Repository TOrino - Politecnico di Torino)
مصطلحات موضوعية: artificial intelligence, radiology, machine learning, quality assurance, quality control, acceptance testing, deep learning
الوصف: The adoption of artificial intelligence (AI) tools in medicine poses challenges to existing clinical workflows. This commentary discusses the necessity of context-specific quality assurance (QA), emphasizing the need for robust QA measures with quality control (QC) procedures that encompass (1) acceptance testing (AT) before clinical use, (2) continuous QC monitoring, and (3) adequate user training. The discussion also covers essential components of AT and QA, illustrated with real-world examples. We also highlight what we see as the shared responsibility of manufacturers or vendors, regulators, healthcare systems, medical physicists, and clinicians to enact appropriate testing and oversight to ensure a safe and equitable transformation of medicine through AI.
نوع الوثيقة: article in journal/newspaper
اللغة: English
Relation: volume:1; issue:1; numberofpages:8; journal:British Journal of Radiology: Artificial Intelligence; https://hdl.handle.net/11583/2986583; https://academic.oup.com/bjrai/article/1/1/ubae003/7615564
DOI: 10.1093/bjrai/ubae003
الاتاحة: https://hdl.handle.net/11583/2986583
https://doi.org/10.1093/bjrai/ubae003
https://academic.oup.com/bjrai/article/1/1/ubae003/7615564
Rights: info:eu-repo/semantics/openAccess
رقم الانضمام: edsbas.4EBFD7C2
قاعدة البيانات: BASE