Academic Journal
Artificial intelligence in medicine: mitigating risks and maximizing benefits via quality assurance, quality control, and acceptance testing
العنوان: | Artificial intelligence in medicine: mitigating risks and maximizing benefits via quality assurance, quality control, and acceptance testing |
---|---|
المؤلفون: | Mahmood, Usman, Shukla-Dave, Amita, Chan, Heang-Ping, Drukker, Karen, Samala, Ravi K, Chen, Quan, Vergara, Daniel, Greenspan, Hayit, Petrick, Nicholas, Sahiner, Berkman, Huo, Zhimin, Summers, Ronald M, Cha, Kenny H, Tourassi, Georgia, Deserno, Thomas M, Grizzard, Kevin T, Näppi, Janne J, Yoshida, Hiroyuki, Regge, Daniele, Mazurchuk, Richard, Suzuki, Kenji, Morra, Lia, Huisman, Henkjan, Armato, Samuel G, Hadjiiski, Lubomir |
المساهمون: | Mahmood, Usman, Shukla-Dave, Amita, Chan, Heang-Ping, Drukker, Karen, Samala, Ravi K, Chen, Quan, Vergara, Daniel, Greenspan, Hayit, Petrick, Nichola, Sahiner, Berkman, Huo, Zhimin, Summers, Ronald M, Cha, Kenny H, Tourassi, Georgia, Deserno, Thomas M, Grizzard, Kevin T, Näppi, Janne J, Yoshida, Hiroyuki, Regge, Daniele, Mazurchuk, Richard, Suzuki, Kenji, Morra, Lia, Huisman, Henkjan, Armato, Samuel G, Hadjiiski, Lubomir |
بيانات النشر: | Oxford Academics |
سنة النشر: | 2024 |
المجموعة: | PORTO@iris (Publications Open Repository TOrino - Politecnico di Torino) |
مصطلحات موضوعية: | artificial intelligence, radiology, machine learning, quality assurance, quality control, acceptance testing, deep learning |
الوصف: | The adoption of artificial intelligence (AI) tools in medicine poses challenges to existing clinical workflows. This commentary discusses the necessity of context-specific quality assurance (QA), emphasizing the need for robust QA measures with quality control (QC) procedures that encompass (1) acceptance testing (AT) before clinical use, (2) continuous QC monitoring, and (3) adequate user training. The discussion also covers essential components of AT and QA, illustrated with real-world examples. We also highlight what we see as the shared responsibility of manufacturers or vendors, regulators, healthcare systems, medical physicists, and clinicians to enact appropriate testing and oversight to ensure a safe and equitable transformation of medicine through AI. |
نوع الوثيقة: | article in journal/newspaper |
اللغة: | English |
Relation: | volume:1; issue:1; numberofpages:8; journal:British Journal of Radiology: Artificial Intelligence; https://hdl.handle.net/11583/2986583; https://academic.oup.com/bjrai/article/1/1/ubae003/7615564 |
DOI: | 10.1093/bjrai/ubae003 |
الاتاحة: | https://hdl.handle.net/11583/2986583 https://doi.org/10.1093/bjrai/ubae003 https://academic.oup.com/bjrai/article/1/1/ubae003/7615564 |
Rights: | info:eu-repo/semantics/openAccess |
رقم الانضمام: | edsbas.4EBFD7C2 |
قاعدة البيانات: | BASE |
DOI: | 10.1093/bjrai/ubae003 |
---|