Academic Journal

Optical coherence tomography in the diagnosis and monitoring of congenital and juvenile glaucoma ; Оптическая когерентная томография в диагностике и мониторинге врождённой и ювенильной глаукомы

التفاصيل البيبلوغرافية
العنوان: Optical coherence tomography in the diagnosis and monitoring of congenital and juvenile glaucoma ; Оптическая когерентная томография в диагностике и мониторинге врождённой и ювенильной глаукомы
المؤلفون: S. I. Zhukova, T. N. Iureva, С. И. Жукова, Т. Н. Юрьева
المصدر: Acta Biomedica Scientifica; Том 7, № 2 (2022); 147-166 ; 2587-9596 ; 2541-9420
بيانات النشر: Scientific Centre for Family Health and Human Reproduction Problems
سنة النشر: 2022
المجموعة: Acta Biomedica Scientifica
مصطلحات موضوعية: ганглиозный комплекс сетчатки, congenital glaucoma, juvenile glaucoma, optic nerve, peripapillary retinal nerve fiber layer, retinal ganglion cell complex, врождённая глаукома, ювенильная глаукома, зрительный нерв, перипапиллярный слой нервных волокон сетчатки
الوصف: Optical coherence tomography (OCT) in everyday routine practice is the method of choice for the instrumental diagnosis of glaucoma in adults. As a non-invasive and safe method of visualizing structural changes in the retina and the optic nerve, the method is of particular value in pediatric practice. At the same time, OCT diagnostics in children is associated with certain difficulties, both during the study and when interpreting the scan results.This review summarizes the data from the literature and our own research in the diagnosis and monitoring of congenital and juvenile glaucoma from the standpoint of our own long-term clinical experience in using optical coherence tomography. We consider the physiological changes of the retina and optic nerve, attention is focused on the need to create a pediatric regulatory database of retinal thickness, the factors that determine the normal range of the data obtained and allow distinguishing physiological processes from pathological ones are identified. Clinical cases confirming the value of OCT in combined pathology are presented as examples. ; Оптическая когерентная томография (ОКТ) в повседневной рутинной практике является методом выбора инструментальной диагностики глаукомы у взрослых. Являясь неинвазивным и безопасным методом визуализации структурных изменений сетчатки и зрительного нерва, метод представляет особую ценность в педиатрической практике. Вместе с тем ОКТ-диагностика у детей сопряжена с определёнными трудностями как при проведении исследования, так и при интерпретации результатов сканирования. В этом обзоре обобщены данные литературы и собственных исследований в диагностике и мониторинге врождённой и ювенильной глаукомы с позиций собственного многолетнего клинического опыта использования оптической когерентной томографии. Рассмотрены физиологические изменения сетчатки и зрительного нерва, акцентировано внимание на необходимости создания педиатрической нормативной базы данных толщины сетчатки, обозначены факторы, определяющие нормальный диапазон ...
نوع الوثيقة: article in journal/newspaper
وصف الملف: application/pdf
اللغة: Russian
Relation: https://www.actabiomedica.ru/jour/article/view/3434/2330; Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and metaanalyses: The PRISMA statement. PLoS Med. 2009; 6(7): e1000097. doi:10.1371/journal.pmed.1000097; Maccora KA, Sheth S, Ruddle JB. Optical coherence tomography in paediatric clinical practice. Clin Exp Optom. 2019; 102: 300-308. doi:10.1111/cxo.12909; Monroy GL, Won J, Spillman DR, Dsouza R, Boppart SA. Clinical translation of handheld optical coherence tomography: Practical considerations and recent advancements. J Biomed Opt. 2017; 22(12): 1-30. doi:10.1117/1.JBO.22.12.121715; Siebelmann S, Bachmann B, Lappas A, Dietlein T, Hermann M, Roters S, et al. Intraoperative optical coherence tomography in corneal and glaucoma surgical procedures. Ophthalmologe. 2016; 113(8): 646-650. doi:10.1007/s00347-016-0320-y; Enders Ph, Schaub F, Adler W, Nikoluk R, Hermann MM, Heindl LM, et al. The use of Bruch’s membrane opening-based optical coherence tomography of the optic nerve head for glaucoma detection in microdiscs. Br J Ophthalmol. 2017; 101(4): 530-535. doi:10.1136/bjophthalmol-2016-308957; Wikstrand MH, Hård A-L, Niklasson A, Hellström A. Birth weight deviation and early postnatal growth are related to optic nerve morphology at school age in children born preterm. Pediatr Res. 2010; 67: 325-329. doi:10.1203/PDR.0b013e3181ca9f43; Feng X, Nan Y, Pan J, Zou R, Shen L, Chen F. Comparative study on optic disc features of premature infants and full‐term newborns. BMC Ophthalmol. 2021; 21(1): 120. doi:10.1186/s12886-021-01833-6; Mansour AM. Racial variation of optic disc size. Ophthalmic Res. 1991; 23(2): 67-72. doi:10.1159/000267091; Mansour AM. Racial variation of optic disc parameters in children. Ophthalmic Surg. 1992; 23(7): 469-471.; Rimmer S, Keating C, Chou T, Farb MD, Christenson PD, Foos RY, et al. Growth of the human optic disk and nerve during gestation, childhood, and early adulthood. Am J Ophthalmol. 1993; 116(6): 748-753. doi:10.1016/s0002-9394(14)73476-2; Huynh SC, Wang XY, Rochtchina E, Crowston JG, Mitchell P. Distribution of optic disc parameters measured by OCT: Findings from a population-based study of 6-year-old Australian children. Invest Ophthalmol Vis Sci. 2006; 47(8): 3276-3285. doi:10.1167/iovs.06-0072; Belghith A, Bowd Ch, Medeiros FA, Hammel N, Yang Zh, Weinreb RN, et al. Does the location of Bruch’s Membrane opening change over time? Longitudinal analysis using San-Diego automated layer segmentation algorithm (SALSA). Invest Ophthalmol Vis Sci. 2016; 57(2): 675-682. doi:10.1167/iovs.15-17671; Катаргина Л.А., Мазанова Е.В., Тарасенков А.О., Сайдашева Э.И., Бржеский В.В., Володин П.Л., и др. Федеральные клинические рекомендации «Диагностика, медикаментозное и хирургическое лечение детей с врожденной глаукомой». Российская педиатрическая офтальмология. 2016; 11(1): 33-51. doi:10.18821/1993-1859-2016-11-1-33-51; Elía N, Pueyo V, Altemir I, Oros D, Pablo LE. Normal reference ranges of optical coherence tomography parameters in childhood. Br J Ophthalmol. 2012; 96(5): 665-670. doi:10.1136/bjophthalmol-2011-300916; Altemir I, Oros D, Elía N, Polo V, Larrosa JM, Pueyo V. Retinal asymmetry in children measured with optical coherence tomography. Am J Ophthalmol. 2013; 156: 1238-1243. doi:10.1016/j.ajo.2013.07.021; Park K, Kim J, Lee J. Reproducibility of Bruch’s membrane opening-minimum rim width measurements with spectral domain optical coherence tomography. J Glaucoma. 2017; 26(11): 1041-1050. doi:10.1097/IJG.0000000000000787; Kromer R, Spitzer MS. Bruch’s membrane opening minimum rim width measurement with SD-OCT: A method to correct for the opening size of Bruch’s membrane. Hindawi J Ophthalmol. 2017; 2017: 8963267. doi:10.1155/2017/8963267; Rhodes LA, Huisingh CE, Quinn AE, McGwin Jr G, LaRussa F, Box D, et al. Comparison of Bruch’s membrane opening-minimum rim width among those with normal ocular health by race. Am J Ophthalmol. 2017; 174(2): 113-118. doi:10.1016/j.ajo.2016.10.022; Enders Ph, Adler W, Schaub F, Hermann MM, Diestelhorst M, Dietlein Th, et al. Optimization strategies for Bruch’s membrane opening minimum rim area calculation: Sequential versus simultaneous minimization. Sci Rep. 2018; 32(2): 314-323. doi:10.1038/eye.2017.306; Stowell Ch, Burgoyne C, Tamm ER, Ethier CR. Biomechanical aspects of axonal damage in glaucoma: A brief review. Exp Eye Res. 2017; 157: 13-19. doi:10.1016/j.exer.2017.02.005; Жукова С.И. ОКТ и ОКТА: случаи клинической практики. Атлас с интерактивным контентом. М.: Апрель; 2019.; Hess DB, Asrani SG, Bhide MG, Enyedi LB, Stinnett SS, Freedman SF. Macular and retinal nerve fiber layer analysis of normal and glaucomatous eyes in children using optical coherence tomography. Am J Ophthalmol. 2005; 139(3): 509-517. doi:10.1016/j.ajo.2004.10.047; Pagon RA. Ocular coloboma. Surv Ophthalmol. 1981; 25(4): 223-236. doi:10.1016/0039-6257(81)90092-8; Lee KM, Woo SJ, Hwang JM. Evaluation of congenital excavated optic disc anomalies with spectral-domain and swept-sourceoptical coherence tomography. Graefes Arch Clin Exp Ophthalmol. 2014; 252(11): 1853-1860. doi:10.1007/s00417-014-2680-9; Gottlieb JL, Prieto DM, Vander JF, Brown GC, Tasman WS. Peripapillary staphyloma. Am J Ophthalmol. 1997; 124(2): 249-251. doi:10.1016/s0002-9394(14)70796-2; May CA. Non-vascular smooth muscle cells in the human choroid: Distribution, development and further characterization. J Anat. 2005; 207(4): 381-390. doi:10.1111/j.1469-7580.2005.00460.x; Yoshida T, Katagiri S, Yokoi T, Nishina S, Azuma N. Optical coherence tomography and video recording of a case of bilateral contractile peripapillary staphyloma. Am J Ophthalmol Case Rep. 2019; 13: 66-69. doi:10.1016/j.ajoc.2018.12.002; Hood DC, De Cuir N, Blumberg DM, Liebmann JM, Jarukasetphon R, Ritch R, et al. A single wide-field OCT protocol can provide compelling information for the diagnosis of early glaucoma. Transl Vis Sci Technol. 2016; 5(6): 4. doi:10.1167/tvst.5.6.4; Kim YW, Choi JJ, Girard MJA, Mari JM, Choi DG, Park KH. Longitudinal observation of border tissue configuration during axial elongation in childhood. Invest Ophthalmol Vis Sci. 2021; 62(4): 10. doi:10.1167/iovs.62.4.10; Barrio-Barrio J, Noval S, Galdós M, Ruiz-Canela M, Bonet E, Capote M, et al. Multicenter Spanish study of spectral-domain optical coherence tomography in normal children. Acta Ophthalmol. 2013; 91(1): e56-63. doi:10.1111/j.1755-3768.2012.02562.x; Rao A, Sahoo B, Kumar M, Varshney G, Kumar R. Retinal nerve fiber layer thickness in children; Altemir I, Oros D, Elía N, Polo V, Larrosa JM, Pueyo V. Retinal asymmetry in children measured with optical coherence tomography. Am J Ophthalmol. 2013; 156(6): 1238-1243.e1. doi:10.1016/j.ajo.2013.07.021; Öner V, Özgür G, Türkyilmaz K, Şekeryapan B, Durmus M. Effect of axial length on retinal nerve fiber layer thickness in children. Eur J Ophthalmol. 2014; 24(2): 265-272. doi:10.5301/ejo.5000345; Al-Haddad C, Antonios R, Tamim H, Noureddin B. Interocular symmetry in retinal and optic nerve parameters in children as measured by spectral domain optical coherence tomography. Br J Ophthalmol. 2014; 98(4): 502-506. doi:10.1136/bjophthalmol-2013-304345; Queirós T, Freitas C, Guimarães S. Valores de referência da tomografia de coerência optica na idade pediátrica [Normative database of optical coherence tomography parameters in childhood]. Acta Med Port. 2015; 28(2): 148-157.; Gürağaç FB, Totan Y, Güler E, Tenlik A, Ertuğrul İG. Normative spectral domain optical coherence tomography data in healthy Turkish children. Semin Ophthalmol. 2017; 32(2): 216-222. doi:10.3109/08820538.2015.1053625; Goh JP, Koh V, Chan YH, Ngo C. Macular ganglion cell and retinal nerve fiber layer thickness in children with refractive errors – An optical coherence tomography study. J Glaucoma. 2017; 26(7): 619-625. doi:10.1097/IJG.0000000000000683; Pawar N, Maheshwari D, Ravindran M, Ramakrishnan R. Interocular symmetry of retinal nerve fiber layer and optic nerve head parameters measured by Cirrus high-definition optical coherence tomography in a normal pediatric population. Indian J Ophthalmol. 2017; 65(10): 955-962. doi:10.4103/ijo.IJO_71_17; Bueno-Gimeno I, Espana-Gregori E, Gene-Sampedro A, Ondategui-Parra JC, Zapata-Rodriguez CJ. Variations of OCT measurements corrected for the magnification effect according to axial length and refractive error in children. J Innov Opt Health Sci. 2018; 1: 185001.; Larsson E, Molnar A, Holmström G. Repeatability, reproducibility and interocular difference in the assessments of optic nerve OCT in children – A Swedish population-based study. BMC Ophthalmol. 2018; 18(1): 270. doi:10.1186/s12886-018-0940-x; Gama R, Santos JC, Costa RS, Costa DC, Eiro N. Optical coherence tomography analysis of the inner retinal layers in children. Can J Ophthalmol. 2018; 53: 614-620. doi:10.1016/j.jcjo.2018.02.025; Turk A, Ceylan OM, Arici C, Keskin S, Erdurman C, Durukan AH, et al. Evaluation of the nerve fiber layer and macula in the eyes of healthy children using spectral-domain optical coherence tomography. Am J Ophthalmol. 2012; 153: 552-559.; Yanni SE, Wang J, Cheng CS, Locke KI, Wen Y, Birch DG, et al. Normative reference ranges for the retinal nerve fiber layer, macula, and retinal layer thicknesses in children. Am J Ophthalmol. 2013; 155(2): 354-360. doi:10.1016/j.ajo.2012.08.010; Dave P, Jethani J, Shah J. Applicability of the ISNT and IST rules on retinal nerve fiber layer measurement on spectral-domain optical coherence tomography in normal Indian children. Graefes Arch Clin Exp Ophthalmol. 2015; 253: 1795-1799. doi:10.1007/s00417-015-2980-8; Lee JWY, Yau GSK, Woo TTY, Lai JSM. The association between macular thickness and peripapillary retinal nerve fiber layer thickness in Chinese children. Medicine. 2015; 94: e567. doi:10.1097/MD.0000000000000567; Perez-Garcia D, Ibanez-Alperte J, Remon L, Cristobal JA, Sanchez-Cano A, Pinilla I. Study of spectral-domain optical coherence tomography in children: normal values and influence of age, sex, and refractive status. Eur J Ophthalmol. 2016; 26: 135-141.; Eslami Y, Vahedian Z, Moghimi S, Bazvand F, Salari H, Sha-habinejad M, et al. Peripapillary retinal nerve fiber layer thickness in normal Iranian children measured with optical coherence tomography. J Ophthalmic Vis Res. 2018; 13: 453-457. doi:10.4103/jovr.jovr_186_17; Rotruck JC, House RJ, Freedman SF, Kelly MP, Enyedi LB, Prakalapakorn SG, et al. Optical coherence tomography normative peripapillary retinal nerve fiber layer and macular data in children ages 0–5 years. Am J Ophthalmol. 2019; 208: 323-330. doi:10.1016/j.ajo.2019.06.025; Tsai DC, Huang N, Hwu JJ, Jueng RN, Chou P. Estimating retinal nerve fiber layer thickness in normal schoolchildren with spectral-domain optical coherence tomography. Jpn J Ophthalmol. 2012; 56: 362-370. doi:10.1007/s10384-012-0142-7; Chen L, Huang J, Zou H, Xue W, Ma Y, He X, et al. Retinal nerve fiber layer thickness in normal Chinese students aged 6 to 17 years. Investig Ophthalmol Vis Sci. 2013; 54: 7990-7997. doi:10.1167/iovs.12-11252; Zhu BD, Li SM, Li H, Liu LR, Wang Y, Yang Z, et al. Retinal nerve fiber layer thickness in a population of 12-year-old children in central China measured by iVue-100 spectral-domain optical coherence tomography: The Anyang Childhood Eye Study. Investig Ophthalmol Vis Sci. 2013; 54: 8104-8111. doi:10.1167/iovs.13-11958; Bhoiwala DL, Simon JW, Raghu P, Krishnamoorthy M, Todani A, Gandham SB, et al. Optic nerve morphology in normal children. J AAPOS. 2015; 19: 531-534. doi:10.1016/j.jaapos.2015.09.008; Kang MT, Li SM, Li H, Li L, Li SY, Zhu BD, et al. Peripapillary retinal nerve fiber layer thickness and its association with refractive error in Chinese children: The Anyang Childhood Eye Study. Clin Exp Ophthalmol. 2016; 44: 701-709. doi:10.1111/ceo.12764; Grundy SJ, Tshering L, Wanjala SW, Diamond MB, Audi MS, Prasad S, et al. Retinal parameters as compared with head circumference, height, weight, and body mass index in children in Kenya and Bhutan. Am J Trop Med Hyg. 2018; 99: 482-488. doi:10.4269/ajtmh.17-0943; Yabas Kiziloglu O, Toygar O, Toygar B, Hacimustafaoglu AM. Retinal nerve fiber layer and macula thickness with spectral domain optical coherence tomography in children: Normal values, repeatability and the influence of demographic and ocular parameters. Turkiye Klinikleri J Ophthalmol. 2018; 27: 28-34. doi:10.5336/ophthal.2016-53972; Ayala M, Ntoula E. Retinal fiber layer thickness measurement in normal paediatric population in Sweden using optical coherence tomography. J Ophthalmol. 2016; 2016: 4160568. doi:10.1155/2016/4160568; Ali AN, Farag RK, El Wahab TAA, Ghanem AA, Hababeh M. Macular and retinal nerve fiber layer analysis by optical coherence tomography in normal children. ARC J Ophthalmol. 2018; 3: 17-28.; Banc A, Ungureanu MI. Normative data for optical coherence tomography in children: A systematic review. Eye (Lond). 2021; 35(3): 714-738. doi:10.1038/s41433-020-01177-3; Kai-Shun Leung Ch, Cheung Carol Y-L, Weinreb RN, Qiu Q, Liu Sh, Li H, et al. Retinal nerve fiber layer imaging with spectraldomain optical coherence tomography: A variability and diagnostic performance study. Ophthalmology. 2009; 116: 1257-1263. doi:10.1016/j.ophtha.2011.10.010; Brodsky MC. Optic nerve hypoplasia: “Neural guidance” and the role of mentorship. J Neuroophthalmol. 2020; 40(1): S21- S28. doi:10.1097/WNO.0000000000001003; Samarawickrama C, Wang XY, Huynh SC, Burlutsky G, Stapleton F, Mitchell P. Effects of refraction and axial length on childhood optic disk parameters measured by optical coherence tomography. Am J Ophthalmol. 2007; 144(3): 459-461. doi:10.1016/j.ajo.2007.05.010; Curcio CA, Allen KA. Topography of ganglion cells in human retina. J Comp Neurol. 1990; 300(1): 5-25. doi:10.1002/cne.903000103; Cuenca N, Ortuño-Lizarán I, Pinilla I. Cellular characterization of OCT and outer retinal bands using specific immunohistochemistry markers and clinical implications. Ophthalmology. 2018; 125(3): 407-422. doi:10.1016/j.ophtha.2017.09.016; Wolf-Schnurrbusch UE, Ceklic L, Brinkmann CK, Iliev ME, Frey M, Rothenbuehler SP, et al. Macular thickness measurements in healthy eyes using six different optical coherence tomography instruments. Invest Ophthalmol Vis Sci. 2009; 50(7): 3432-3437. doi:10.1167/iovs.08-2970; Early Treatment Diabetic Retinopathy Study Research Group. Fluorescein angiographic risk factors for progression of diabetic retinopathy. ETDRS report number 13. Ophthalmology. 1991; 98(Suppl 5): 834-840.; Provis JM, Dubis AM, Maddess T, Carroll J. Adaptation of the central retina for high acuity vision: Cones, the fovea and the avascular zone. Prog Retin Eye Res. 2013; 35: 63-81. doi:10.1016/j.preteyeres.2013.01.005; Lee H, Purohit R, Patel A, Papageorgiou E, Sheth V, Maconachie G, et al. In vivo foveal development using optical coherence tomography. Invest Ophthalmol Vis Sci. 2015; 56(8): 4537-4545. doi:10.1167/iovs.15-16542; Rotruck JC, House RJ, Freedman SF, Kelly MP, Enyedi LB, Prakalapakorn SG, et al. Optical coherence tomography normative peripapillary retinal nerve fiber layer and macular data in children 0–5 years of age. Am J Ophthalmol. 2019; 208: 323-330. doi:10.1016/j.ajo.2019.06.025; Alabduljalil T, Westall CA, Reginald A, Farsiu S, Chiu SJ, Arshavsky A, et al. Demonstration of anatomical development of the human macula within the first 5 years of life using handheld OCT. Int Ophthalmol. 2019; 39(7): 1533-1542. doi:10.1007/s10792-018-0966-3; Yoo YJ, Hwang JM, Yang HK. Inner macular layer thickness by spectral domain optical coherence tomography in children and adults: A hospital-based study. Br J Ophthalmol. 2019; 103(11): 1576-1583. doi:10.1136/bjophthalmol-2018-312349; Galdos M, Barrio-Barrio J, Noval S, Ruiz-Canela M, Bonet E, Capote M, et al. Multicenter macular ganglion cell analysis: Normative paediatric reference range. Acta Ophthalmol. 2014; 92(4): e326-7.47. doi:10.1111/aos.12316; Totan Y, Gürağaç FB, Güler E. Evaluation of the retinal ganglion cell layer thickness in healthy Turkish children. J Glaucoma. 2015; 24(5): e103-e108. doi:10.1097/IJG.0000000000000168; Maldonado RS, O’Connell RV, Sarin N, Freedman SF, Wallace DK, Cotton CM, et al. Dynamics of human foveal development after premature birth. Ophthalmology. 2011; 118(12): 2315-2325. doi:10.1016/j.ophtha.2011.05.028; Hood DC, Raza AS, Gustavo V de Moraes C, Liebmann JM, Ritch R. Glaucomatous damage of the macula. Prog Retin Eye Res. 2013; 32: 1-21. doi:10.1016/j.preteyeres.2012.08.003; Fujihara FMF, de Arruda Mello PA, Lindenmeyer RL, Pakter HM, Lavinsky J, et al. Individual macular layer evaluation with spectral domain optical coherence tomography in normal and glaucomatous eyes. Clin Ophthalmol. 2020; 14: 1591-1599. doi:10.2147/OPTH.S256755; Go MS, Barman NR, Kelly MP, House RJ, Rotruck JC, El-Dairi MA, et al. Overhead mounted optical coherence tomography in childhood glaucoma evaluation. J Glaucoma. 2020; 29(9): 742-749. doi:10.1097/IJG.0000000000001567; Щуко А.Г., Юрьева Т.Н., Чекмарева Л.Т., Малышев В.В. Глаукома и патология радужки. М.; 2009.; Wolff B, Azar G, Vasseur V, Sahel JA, Vignal C, Mauget-Faÿsse M. Microcystic changes in the retinal internal nuclear layer associated with optic atrophy: A prospective study. J Ophthalmol. 2014; 2014: 395189. doi:10.1155/2014/395189; https://www.actabiomedica.ru/jour/article/view/3434
DOI: 10.29413/ABS.2022-7.2.16
الاتاحة: https://www.actabiomedica.ru/jour/article/view/3434
https://doi.org/10.29413/ABS.2022-7.2.16
Rights: Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). ; Авторы, публикующие в данном журнале, соглашаются со следующим:Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы сохраняют право заключать отдельные контрактные договорённости, касающиеся не-эксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге), со ссылкой на ее оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access).
رقم الانضمام: edsbas.4D4412D4
قاعدة البيانات: BASE
الوصف
DOI:10.29413/ABS.2022-7.2.16