Conference
YouMVOS: an actor-centric multi-shot video object segmentation dataset
العنوان: | YouMVOS: an actor-centric multi-shot video object segmentation dataset |
---|---|
المؤلفون: | Wei, D, Kharbanda, S, Arora, S, Roy, R, Jain, N, Palrecha, A, Shah, T, Mathur, S, Mathur, R, Kemkar, A, Chakravarthy, A, Lin, Z, Jang, W-D, Tang, Y, Bai, S, Tompkin, J, Torr, PHS, Pfister, H |
بيانات النشر: | IEEE |
سنة النشر: | 2022 |
المجموعة: | Oxford University Research Archive (ORA) |
الوصف: | Many video understanding tasks require analyzing multishot videos, but existing datasets for video object segmentation (VOS) only consider single-shot videos. To address this challenge, we collected a new dataset-YouMVaS-of 200 popular YouTube videos spanning ten genres, where each video is on average five minutes long and with 75 shots. We selected recurring actors and annotated 431K segmentation masks at a frame rate of six, exceeding previous datasets in average video duration, object variation, and narrative structure complexity. We incorporated good practices of model architecture design, memory management, and multi-shot tracking into an existing video segmentation method to build competitive baseline methods. Through error analysis, we found that these baselines still fail to cope with cross-shot appearance variation on our YouMVOS dataset. Thus, our dataset poses new challenges in multi-shot segmentation towards better video analysis. Data, code, and pre-trained models are available at https://donglaiw.github.io/proj/youMVOS |
نوع الوثيقة: | conference object |
اللغة: | English |
Relation: | https://ora.ox.ac.uk/objects/uuid:0f7dbe82-dc2c-4d3b-a148-caf4253aa181; https://doi.org/10.1109/CVPR52688.2022.02037 |
DOI: | 10.1109/CVPR52688.2022.02037 |
الاتاحة: | https://doi.org/10.1109/CVPR52688.2022.02037 https://ora.ox.ac.uk/objects/uuid:0f7dbe82-dc2c-4d3b-a148-caf4253aa181 |
Rights: | info:eu-repo/semantics/openAccess |
رقم الانضمام: | edsbas.4A77B03E |
قاعدة البيانات: | BASE |
DOI: | 10.1109/CVPR52688.2022.02037 |
---|