PAHs化合物在黃金葛植物中分布特性之研究

التفاصيل البيبلوغرافية
العنوان: PAHs化合物在黃金葛植物中分布特性之研究
المؤلفون: 廖世閎
المساهمون: 洪益夫
سنة النشر: 2008
المجموعة: National Tsing Hua University Institutional Repository (NTHUR)
مصطلحات موضوعية: 黃金葛植物, PAHs
Time: 21
الوصف: 碩士 ; 國立清華大學 ; 生醫工程與環境科學系 ; GH009512528 ; 多環芳香性碳氫化合物(polycyclic aromatic hydrocarbons, PAHs)為有毒的環境有機污染物,部分PAHs有很強的致癌性和致突變性,且結構穩定容易長時間停留在環境中造成累積的情況。針對去除環境中PAHs的研究已經有廣泛的討論,其中利用植生整治(Phytoremediation)去除土壤、污水、底泥中的汙染物也有不少研究,該方法為了解植物吸收的特性來去除常見的有機污染物。本篇選用臺灣常見的觀葉植物黃金葛,針對其根部吸收PAHs的累積特性以及轉移機制研究,進而了解黃金葛對於特定PAHs有達到植生整治的效果,藉由植物根系作用,吸收污染物質,並運送至地面以上植株部位,以鏟除植被方式達到除污之目的。 研究結果顯示Naphthalene在黃金葛植物根部中的濃度呈現不規則變化,而Fluorene有較弱的吸收累積,對於Phenanthrene 、Fluoranthene、Pyrene、和Benzo(g,h,i)perylene這四種PAHs有強烈的吸收累積。Phenanthrene 、Fluoranthene、Pyrene和Benzo(g,h,i)perylene這四種PAHs,皆有由根部轉移到莖部的現象,接著轉移到葉子的情況很不明顯,顯示PAHs在植物體中的轉移是受到限制的,綜合以上我們可以利用黃金葛根部強烈吸收以及轉移PAHs的特性來去除環境中的Phenanthrene 、Fluoranthene、Pyrene和Benzo(g,h,i)perylene這四種PAHs。 利用根部吸附模型的理論計算和實驗數據做比對,發現到添加最高濃度的PAHs水溶液(solution at the beginning 500μg/L)實驗值遠高於理論值且偏離線性範圍,推測高濃度的PAHs水溶液有毒害黃金葛的現象造成植物根部的PAHs濃度偏高,也許黃金葛根部對於Phenanthrene 、Fluoranthene、Pyrene和Benzo(g,h,i)perylene這四種PAHs的各別最大負荷濃度不能超過7505±575,13551±909,13680±1025,12612±1042 μg /kg dry wt。
نوع الوثيقة: other/unknown material
وصف الملف: 155 bytes; text/html
اللغة: Chinese
Relation: 1. C. J. Halsall, Coleman P. J, et al., 1994. "Polycyclic Aromatic Hydrocarbons in U.K Urban Air. " Environmental Science & Technology, 28, 2380-2386. 2. J. Zheng, B. D. Hammock, 1996. " Development of polyclonal antibodies for detection of protein modification by 1,2-naphthoqunone."Chemical Research In Toxicology. 9, 904-909. 3. United States Environmental Protection Agency , Office of Solid Waste Washington DC 20460 , 2008. " polycyclic aromatic hydrocarbons (PAHs). " 4. 楊以仁,"多環芳香烴化合物在榕樹葉與榕樹氣根中累積特性之研究",國立清華大學生醫工程與環境科學研究所碩士論文,新竹,民國96年。 5. B. Chen, X. Xuan, et al., 2004. " Distributions of polycyclic aromatic hydrocarbons in surface waters, sediments and soils of Hangzhou City, China. " Water Research, 38, 3558-3568. 6. H. Li, G. Sheng, 2005. " Relation of Organic Contaminant Equilibrium Sorption and Kinetic Uptake in Plants. " Environmental Science & Technology, 39, 4864-4870. 7. A. Meudec, J. Dussauze, et al., 2006. " Evidence for bioaccumulation of PAHs within internal shoot tissues by a halophytic plant artificially exposed to petroleum-polluted sediments. " Chemosphere, 65, 474–481. 8. S. H. Lee, W. S. Lee, et al., 2008. " Degradation of phenanthrene and pyrene in rhizosphere of grasses and legumes. " Journal of Hazardous Materials, 153, 892-898. 9. C. Chiou, G. Sheng, et al., 2001. " A Partition-Limited Model for the Plant Uptake of Organic Contaminants from Soil and Water. " Environmental Science & Technology, 35, 1437-1444. 10. C. Vanier, D. Planas, M. Sylvestre, 1999. "Empirical relationships between polychlorinated biphenyls in sediments and submerged rooted macrophytes. " Canadian Fishery and Aquatic Sciences, 56, 1792-1800. 11. E. Wild, J. Dent, et al., 2005. " Direct Observation of Organic Contaminant Uptake, Storage, and Metabolism within Plant Roots ." Environmental Science & Technology, 39, 3695-3702. 12. E. Wild, J. Dent, et al., 2006. " Visualizing the Air-To-Leaf Transfer and Within-Leaf Movement and Distribution of Phenanthrene: Further Studies Utilizing Two-Photon Excitation Microscopy. " Environmental Science & Technology, 40, 907-916. 13. S. T. Simonich, R. A. Hites, 1995. " Organic pollutant accumulation in vegetation. EnViron. " Environmental Science & Technology, 9 (12), 2905-2913. 14. F. Korte, G. Kvesitadze, D. Ugrekhelidze, et al., 2000. " Review: organic toxicants and plants. " Ecotoxicol Environment Safety, 47, 1-26. 15. A. Hulster, J. F. Muller, et al., 1994. " Soil-Plant Transfer of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans to Vegetables of the Cucumber Family (Cucurbitaceae) ." Environmental Science & Technology, 28, 1110-1115. 16. G. G. Briggs, et al., 1982. "Relationships between lipophilicity and root uptake and translocation of nonionized chemicals by barley ." Pesticide Science, 13, 495-504. 17. G. G. Briggs, et al., 1983. "Relationships between lipophilicity and the distribution of nonionized chemicals in barley shoots following uptake by the roots. " Pesticide Science, 14, 492-500. 18. D. Lin, L. Zhu, et al., 2006. " Tea Plant Uptake and Translocation of Polycyclic Aromatic Hydrocarbons from Water and around Air." Journal of Agricultural and Food Chemistry, 54, 3658-3662. 19. H. Lin, S. Tao, et al., 2006. " Uptake of polycyclic aromatic hydrocarbons by maize plants. " Environmental Pollution, 148, 614-619. 20. S. L. Simonich, R. A. Hites, 1994. " Vegetation and atmosphere partitioning of polycyclic aromatic hydrocarbons. " Environmental Science & Technology, 28, 939-943. 21. Y. Gao, W. Ling, 2006. " Comparison for plant uptake of phenanthrene and pyrene from soil and water. " Biology and Fertility of Soils, 42, 387–394. 22. Y. H. Su, Y. G. Zhu, 2007. " Transport mechanisms for the uptake of organic compounds by rice (Oryza sativa) roots. " Environmental Pollution, 148, 94-100. 23. C. T. Chlou, 1985. " Partition Coefficients of Organic Compounds in Lipid-Water Systems and Correlations with Fish Bioconcentration Factors. " Environmental Science & Technology, 19, 57-62.; http://nthur.lib.nthu.edu.tw/dspace/handle/987654321/33547
الاتاحة: http://nthur.lib.nthu.edu.tw/dspace/handle/987654321/33547
رقم الانضمام: edsbas.4A06C276
قاعدة البيانات: BASE