Academic Journal
Dichotomic Basis Approach to Solving Hyper-Sensitive Optimal Control Problems
العنوان: | Dichotomic Basis Approach to Solving Hyper-Sensitive Optimal Control Problems |
---|---|
المؤلفون: | A.V. Rao |
المساهمون: | The Pennsylvania State University CiteSeerX Archives |
المصدر: | http://www.eng.uci.edu/fdcl/pdf/rao_automatica.pdf. |
سنة النشر: | 1999 |
المجموعة: | CiteSeerX |
مصطلحات موضوعية: | Optimal control, Dichotomic transformation, Hamiltonian systems |
الوصف: | As a step toward developing a general method for determining the underlying geometric structure of two time-scale optimally controlled nonlinear systems, we define a degenerate class of two time-scale optimal control problems, called completely hypersensitive problems, and propose an indirect solution method for this class of problems. The method uses a dichotomic basis to split the Hamiltonian vector field into its stable and unstable components. An accurate approximation to the optimal solution is constructed by matching the initial and terminal boundary-layer segments with the equilibrium solution. A variation of the method for the case of an approximate dichotomic basis is also developed and is applied to a nonlinear spring-mass problem. The challenging problem of determining a dichotomic basis or a su#ciently accurate approximation to one is discussed only briefly, but some potential solutions are identified. # 1999 Elsevier Science Ltd. All rights reserved. Keywords: Optimal control; Dichotomic transformation; Hamiltonian systems 1. |
نوع الوثيقة: | text |
وصف الملف: | application/pdf |
اللغة: | English |
Relation: | http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.155; http://www.eng.uci.edu/fdcl/pdf/rao_automatica.pdf |
الاتاحة: | http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.155 http://www.eng.uci.edu/fdcl/pdf/rao_automatica.pdf |
Rights: | Metadata may be used without restrictions as long as the oai identifier remains attached to it. |
رقم الانضمام: | edsbas.48C3E32D |
قاعدة البيانات: | BASE |
الوصف غير متاح. |