DEVELOPMENT OF A COMPUTER SIMULATION SCHEME FOR TWO AND THREE DIMENSIONAL ICE SHEET DYNAMICS MODELS

التفاصيل البيبلوغرافية
العنوان: DEVELOPMENT OF A COMPUTER SIMULATION SCHEME FOR TWO AND THREE DIMENSIONAL ICE SHEET DYNAMICS MODELS
المؤلفون: カワイ シンイチ, ナカワ マサヨシ, Shinichi KAWAI, Masayoshi NAKAWO
بيانات النشر: ABSTRACT
National Research Institute for Earth Science and Disaster Prevention
Institute for Hydrospheric-Atmospheric Sciences, Nagoya University
National Institute of Polar Research
سنة النشر: 1994
المجموعة: National Institute of Polar Research Repository, Japan / 国立極地研究所学術情報リポジトリ
الوصف: We have developed a scheme for two and three dimensional ice sheet dynamics with the model considered by Mahaffy, assuming the basal sliding velocity to be zero. Mahaffy's model is given by ∂h/∂t=b-▽・q and q=-ck▽h, or c▽・(-k▽h)=b-∂h/∂t, where c={(2A)/(n+2)} (ρg)^n and k (x, y, t)=(▽h・▽h)^<(n-1)/2> (h-z_0)^. We can lead the dimensionless form, in which c=1. In the two dimensional model, let Ω_1=[-x_1,x_1] which is the land area, and Ω_2=[-x_2,-x_1) ∪ (x_1,x_2], which is the sea area, where 0=z_0 (i△x) (i=0,1,., n). Then q_ and h_ are placed alternately. The finite difference representations of Mahaffy's model are q_ =-{(h_ -h_ )/△x}^n{(h_ +h_ )/2+(z_ +z_ ^-_1)/2}^ and h_ =h_ +△t{b-(q_ -q_ )/△x}. If i△x ⋴ Ω_2,mq_ is used instead of q_ . Boundary conditions are q_<0,k>=(-1)^n q_<1,k> and h_=0. In the three dimensional model, let Ω be the region of interest and ∂Ω be the boundary of Ω. For both sides of Mahaffy's model, we multiply the weighting function W_l and integrate in the interior region Ω and apply Green's theorem, ⎰_Ω k▽h・▽W_ldΩ-⎰_<∂Ω>k (∂h/∂n) W_ldГ=⎰_Ω(b-∂h/∂t) W_ldΩ, where ∂h/∂n=▽h・n in which n is the outer normal vector of ∂Ω. We divided the region Ω into N small regions Ω^e. Let M be the number of nodes and assign a number from 1 to M to each node. Let h^^^^ be the approximation of h. [numerical formula] where N_m (x, y) are basis functions which are 1 at the node m and 0 in small regions which do not include the node m. We take N_1 as the weighting function. Let k=k(h), b=b(h), K_ (h)=⎰_Ω k{(∂N_m/∂x)(∂N_l/∂x)+(∂N_m/∂y)(∂N_l/∂y)}dΩ-⎰_<∂Ω>k(∂N_m/∂n) N_ldГ, C_=⎰_ΩN_mN_ldΩ, ƒ_l(h)=⎰_ΩbN_ldΩ, K=(K_)_ C=(C_)_ and f=(ƒ_<1,., >ƒ_M)^T. ...
نوع الوثيقة: report
اللغة: English
Relation: https://nipr.repo.nii.ac.jp/?action=repository_uri&item_id=3865; http://id.nii.ac.jp/1291/00003865/; AA10756213; Proceedings of the NIPR Symposium on Polar Meteorology and Glaciology, 8, 208(1994-11); https://nipr.repo.nii.ac.jp/?action=repository_action_common_download&item_id=3865&item_no=1&attribute_id=18&file_no=1
الاتاحة: https://nipr.repo.nii.ac.jp/?action=repository_uri&item_id=3865
http://id.nii.ac.jp/1291/00003865/
https://nipr.repo.nii.ac.jp/?action=repository_action_common_download&item_id=3865&item_no=1&attribute_id=18&file_no=1
رقم الانضمام: edsbas.485856F4
قاعدة البيانات: BASE