Academic Journal

Evaluation of the Thickness and Oxygen Transmission Rate before and after Thermoforming Mono- and Multi-layer Sheets into Trays with Variable Depth

التفاصيل البيبلوغرافية
العنوان: Evaluation of the Thickness and Oxygen Transmission Rate before and after Thermoforming Mono- and Multi-layer Sheets into Trays with Variable Depth
المؤلفون: BUNTINX, Mieke, WILLEMS, Gert, KNOCKAERT, Griet, Adons, Dimitri, YPERMAN, Jan, CARLEER, Robert, PEETERS, Roos
سنة النشر: 2014
المجموعة: Document Server@UHasselt (Universiteit Hasselt)
مصطلحات موضوعية: thermoforming, oxygen transmission rate, gas barrier, EVOH, semi-rigid food packaging, flexible food packaging film
الوصف: During thermoforming, plastic sheets are heated and subsequently deformed through the application of mechanical stretching and/or pressure. This process directly impacts sheet properties such as material thickness in walls, corners, and bottom, crystallinity in the constituent layers, and particularly the oxygen gas permeability. The aim of this study was to quantify the impact of thermoforming on thickness and oxygen transmission rate (OTR) of selected packaging materials (polypropylene (PP); PP/ethylene-vinyl alcohol co-polymer/PP (PP/EVOH/PP); polystyrene/EVOH/polyethylene (PS/EVOH/PE); amorphous polyethylene terephtalate/PE (APET/PE); APET/PE/EVOH/PE; polyamide/PE (PA/PE); and (PE/)PA/EVOH/PA/PE). These materials were extruded in two different thicknesses and thermoformed into trays with the same top dimensions and variable depths of 25, 50, and/or 75 mm and a 50 mm tray with a variable radius of the corners. The distribution of the material thickness in the trays was visualized, showing the locations that were most affected by the deep drawn process. The OTR results indicate that the calculated OTR, based on a homogeneous material distribution, can be used as a rough approximation of the measured OTR. However, detailed analysis of crystallization and unequal thinning, which is also related to the tray design, remains necessary to explain the deviation of the measured OTR as compared to the predicted one. ; The MaProDe_Ox project “Impact of Material, Process & Design on the Oxygen Permeability of Thermoformed Packaging” was supported by grants from Flanders’ Food (FF).
نوع الوثيقة: article in journal/newspaper
وصف الملف: application/pdf
اللغة: English
تدمد: 2073-4360
Relation: References Czerniawski, B. Analysis of plastics packaging domestic market. Polimery 2007, 52, 811–819. [Google Scholar] Throne, J.L. Understanding Thermoforming; Carl Hanser Verlag: Munich, Germany, 2008. [Google Scholar] Li, Z.Z.; Heo, K.S.; Xuan, D.J.; Seol, S.Y. A study on cooling efficiency using 1-d analysis code suitable for cooling system of thermoforming. J. Mech. Sci. Technol. 2009, 23, 607–613. [Google Scholar] [CrossRef] Pettersen, M.K.; Gallstedt, M.; Eie, T. Oxygen barrier properties of thermoformed trays manufactured with different drawing methods and drawing depths. Packag. Technol. Sci. 2004, 17, 43–52. [Google Scholar] [CrossRef] Pettersen, M.K.; Nilsson, A.; Espedal, A.; Kohler, A. Prediction of oxygen transmission rate for thermoformed trays. Packag. Technol. Sci. 2004, 17, 321–332. [Google Scholar] [CrossRef] Crippa, A.; Sydenstricker, T.H.D.; Amico, S.C. Evaluation of multilayer thermoformed films for food packaging. Polym. Plastics Technol. Eng. 2008, 47, 991–995. [Google Scholar] [CrossRef] Rosen, S.R. Thermoforming: Improving Process Performance; Society of Manufacturing Engineers: Dearborn, MI, USA, 2002; pp. 155–179. [Google Scholar] Martin, P.J.; Duncan, P. The role of plug design in determining wall thickness distribution in thermoforming. Polym. Eng. Sci. 2007, 47, 804–813. [Google Scholar] [CrossRef] Erdogan, E.S.; Eksi, O. Prediction of wall thickness distribution in simple thermoforming moulds. J. Mech. Eng. 2014, 60, 195–202. [Google Scholar] [CrossRef] Makradi, A.; Ahzi, S.; Belouettar, S.; Ruch, D. Thermoforming process of semicrystalline polymeric sheets: Modeling and finite element simulations. Polym. Sci. Ser. A 2008, 50, 550–557. [Google Scholar] [CrossRef] Robertson, G.L. Orientation. In Food Packaging: Principles and Practice; CRC Press: London, UK, 2013; pp. 152–155. [Google Scholar] Aroujalian, A.; Ngadi, M.O.; Emond, J.P. Wall thickness distribution in plug-assist vacuum formed strawberry containers. Polym. Eng. Sci. 1997, 37, 178–182. [Google Scholar] [CrossRef] Chen, S.C.; Huang, S.T.; Lin, M.C.; Chien, R.D. Study on the thermoforming of PC films used for in-mold decoration. Int. Commun. Heat Mass Transf. 2008, 35, 967–973. [Google Scholar] [CrossRef] O’Connor, C.P.J.; Martin, P.J.; Sweeney, J.; Menary, G.; Caton-Rose, P.; Spencer, P.E. Simulation of the plug-assisted thermoforming of polypropylene using a large strain thermally coupled constitutive model. J. Mater. Process. Technol. 2013, 213, 1588–1600. [Google Scholar] [CrossRef] Giménez, E.; Lagarón, J.M.; Cabedo, L.; Gavara, R.; Saura, J.J. Study of the thermoformability of ethylene-vinyl alcohol copolymer based barrier blends of interest in food packaging applications. J. Appl. Polym. Sci. 2004, 91, 3851–3855. [Google Scholar] [CrossRef] Mueller, K.; Schoenweitz, C.; Langowski, H.C. Thin laminate films for barrier packaging application-influence of down gauging and substrate surface properties on the permeation properties. Packag. Technol. Sci. 2012, 25, 137–148. [Google Scholar] [CrossRef] Standard Test Method for Determination of Oxygen Gas Transmission Rate, Permeability and Permeance at Controlled Relative Humidity through Barrier Materials Using a Coulometric Detector; ASTM F1927. ASTM International: West Conshohocken, PA, USA, 2007. Standard Test Method for Oxygen Transmission Rate through Dry Packages Using a Coulometric Sensor; ASTM F1307. ASTM International: West Conshohocken, PA, USA, 2007. Yamamoto, T.; Kanda, T.; Nishihara, Y.; Ooshima, T.; Saito, Y. Correlation study among oxygen permeability, molecular mobility, and amorphous structure change of poly(ethylene-vinylalcohol copolymers) by moisture. J. Polym. Sci. B Polym. Phys. 2009, 47, 1181–1191. [Google Scholar] [CrossRef] Mokwena, K.K.; Tang, J. Ethylene vinyl alcohol: A review of barrier properties for packaging shelf stable foods. Crit. Rev. Food Sci. Nutr. 2012, 52, 640–650. [Google Scholar] [CrossRef] Ayhan, Z.; Zhang, Q.H. Wall thickness distribution in thermoformed food containers produced by a Benco aseptic packaging machine. Polym. Eng. Sci. 2000, 40, 1–10. [Google Scholar] [CrossRef] Collins, P.; Harkin-Jones, E.M.A.; Martin, P.J. The role of tool/sheet contact in plug-assisted thermoforming. Int. Polym. Process. 2002, 17, 361–369. [Google Scholar] [CrossRef] Vieth, W.R. Diffusion in and through Polymers: Principles and Applications; Hanser Publishers: Munich, Germany, 1991. [Google Scholar] Vandewijngaarden, J.; Murariu, M.; Dubois, P.; Carleer, R.; Yperman, J.; Adriaensens, P.; Schreurs, S.; Lepot, N.; Peeters, R.; Buntinx, M. Gas permeability properties of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). J. Polym. Environ. 2014, 22, 1–7. [Google Scholar] [CrossRef] Kuraray. EVAL™ EVOH Resins. Available online: http://www.eval.eu/media/15492/technical%20brochure_english.pdf (accessed on 1 September 2014). Hiltner, A.; Liu, R.Y.F.; Hu, Y.S.; Baer, E. Oxygen transport as a solid-state structure probe for polymeric materials: A review. J. Polym. Sci. B Polym. Phys. 2005, 43, 1047–1063. [Google Scholar] [CrossRef] Mastromatteo, M.; Del Nobile, M.A. A simple model to predict the oxygen transport properties of multilayer films. J. Food Eng. 2011, 102, 170–176. [Google Scholar] [CrossRef] Zhang, Z.; Britt, I.J.; Tung, M.A. Permeation of oxygen and water vapor through EVOH films as influenced by relative humidity. J. Appl. Polym. Sci. 2001, 82, 1866–1872. [Google Scholar] [CrossRef] Kim, D.; Kim, S.W. Barrier property and morphology of polypropylene/polyamide blend film. Korean J. Chem. Eng. 2003, 20, 776–782. [Google Scholar] [CrossRef] Takahashi, M.; Tashiro, K.; Amiya, S. Crystal structure of ethylene-vinyl alcohol copolymers. Macromolecules 1999, 32, 5860–5871. [Google Scholar] [CrossRef] Hernandez, R.J. Effect of water vapor on the transport properties of oxygen through polyamide packaging materials. J. Food Eng. 1994, 22, 495–507. [Google Scholar] [CrossRef] Buntinx, M.; Willems, G.; Adons, D.; Yperman, J.; Carleer, R.; Peeters, R. Evaluation of oxygen transmission rate and thickness before and after thermoforming mono- and multilayer sheets into trays with variable depth. In Proceedings of the 26th IAPRI Symposium on Packaging 2013, Espoo, Finland, 10–13 June 2013; pp. 386–398. Buntinx, M.; Willems, G.; Adons, D.; Yperman, J.; Carleer, R.; Peeters, R. Impact of thermoforming on the oxygen transmission rate and thickness of thermoformed trays. In Proceedings of International Conference on Market Trends and Developments in Plastics Tubs, Cups and Tray Packaging, Cologne, Germany, 3–5 December 2013. Jakobsen, M.; Jespersen, L.; Juncher, D.; Becker, E.M.; Risbo, J. Oxygen- and light-barrier properties of thermoformed packaging materials used for modified atmosphere packaging. Evaluation of performance under realistic storage conditions. Packag. Technol. Sci. 2005, 18, 265–272. [Google Scholar] [CrossRef] Rodriguez-Aguilera, R.; Oliveira, J.C. Review of design engineering methods and applications of active and modified atmosphere packaging systems. Food Eng. Rev. 2009, 1, 66–83. [Google Scholar] [CrossRef] Van Bree, I.; de Meulenaer, B.; Samapundo, S.; Vermeulen, A.; Ragaert, P.; Maes, K.C.; de Baets, B.; Devlieghere, F. Predicting the headspace oxygen level due to oxygen permeation across multilayer polymer packaging materials: A practical software simulation tool. Innov. Food Sci. Emerg. Technol. 2010, 11, 511–519. [Google Scholar] [CrossRef] Ragaert, P.; Vermeulen, A.; Buntinx, M.; Peeters, R. New research gives further insights on O2-ingress in food packaging. New Food 2014, 17, 8–11. [Google Scholar] - See more at: http://www.mdpi.com/2073-4360/6/12/3019/htm#sthash.Oe1d8kxA.dpuf; Polymers, 6 (12), p. 3019-3043; http://hdl.handle.net/1942/18066; 3043; 12; 3019; 000346795700009; http://www.mdpi.com/2073-4360/6/12/3019
DOI: 10.3390/polym6123019
الاتاحة: http://hdl.handle.net/1942/18066
https://doi.org/10.3390/polym6123019
http://www.mdpi.com/2073-4360/6/12/3019
Rights: © 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/). - See more at: http://www.mdpi.com/2073-4360/6/12/3019/htm#sthash.Oe1d8kxA.dpuf ; info:eu-repo/semantics/openAccess
رقم الانضمام: edsbas.4619C925
قاعدة البيانات: BASE
الوصف
تدمد:20734360
DOI:10.3390/polym6123019