Academic Journal

Representing upper probability measures over rational Lukasiewicz logic

التفاصيل البيبلوغرافية
العنوان: Representing upper probability measures over rational Lukasiewicz logic
المؤلفون: Marchioni, Enrico
بيانات النشر: Mathware & Soft Computing
سنة النشر: 2008
المجموعة: Universitat Oberta de Catalunya (UOC), Barcelona: Institutional Repository
مصطلحات موضوعية: informàtica teórica, lògica racional, probabilitat, theoretical computing, rational logic, probability, lógica racional, informática teórica, probabilidad, Artificial intelligence, Intel·ligència artificial, Inteligencia artificial
الوصف: Upper probability measures are measures of uncertainty that generalize probability measures in order to deal with non-measurable events. Following an approach that goes back to previous works by H ajek, Esteva, and Godo, we show how to expand Rational Lukasiewicz Logic by modal operators v in order to reason about upper probabilities of classical boolean events y so that v(y) can be read as 'the upper probability of y'. We build the logic U (R L) for representing upper probabilities and show it to be complete w.r.t. a class of Kripke structures equipped with an upper probability measure. Finally, we prove that the set of U (R L)-satis able formulas is NP-complete.
نوع الوثيقة: article in journal/newspaper
وصف الملف: application/pdf
اللغة: English
تدمد: 1134-5632
Relation: Mathware & Soft Computing, 2008, 15(2); https://upcommons.upc.edu/handle/2099/13198; Marchioni, E. (2008). Representing upper probability measures over rational Lukasiewicz logic. Mathware & Soft Computing, 15(2), 159-173.; http://hdl.handle.net/10609/92546
الاتاحة: http://hdl.handle.net/10609/92546
Rights: CC BY ; https://creativecommons.org/licenses/by/4.0/ ; info:eu-repo/semantics/openAccess
رقم الانضمام: edsbas.46040028
قاعدة البيانات: BASE