التفاصيل البيبلوغرافية
العنوان: |
Representing upper probability measures over rational Lukasiewicz logic |
المؤلفون: |
Marchioni, Enrico |
بيانات النشر: |
Mathware & Soft Computing |
سنة النشر: |
2008 |
المجموعة: |
Universitat Oberta de Catalunya (UOC), Barcelona: Institutional Repository |
مصطلحات موضوعية: |
informàtica teórica, lògica racional, probabilitat, theoretical computing, rational logic, probability, lógica racional, informática teórica, probabilidad, Artificial intelligence, Intel·ligència artificial, Inteligencia artificial |
الوصف: |
Upper probability measures are measures of uncertainty that generalize probability measures in order to deal with non-measurable events. Following an approach that goes back to previous works by H ajek, Esteva, and Godo, we show how to expand Rational Lukasiewicz Logic by modal operators v in order to reason about upper probabilities of classical boolean events y so that v(y) can be read as 'the upper probability of y'. We build the logic U (R L) for representing upper probabilities and show it to be complete w.r.t. a class of Kripke structures equipped with an upper probability measure. Finally, we prove that the set of U (R L)-satis able formulas is NP-complete. |
نوع الوثيقة: |
article in journal/newspaper |
وصف الملف: |
application/pdf |
اللغة: |
English |
تدمد: |
1134-5632 |
Relation: |
Mathware & Soft Computing, 2008, 15(2); https://upcommons.upc.edu/handle/2099/13198; Marchioni, E. (2008). Representing upper probability measures over rational Lukasiewicz logic. Mathware & Soft Computing, 15(2), 159-173.; http://hdl.handle.net/10609/92546 |
الاتاحة: |
http://hdl.handle.net/10609/92546 |
Rights: |
CC BY ; https://creativecommons.org/licenses/by/4.0/ ; info:eu-repo/semantics/openAccess |
رقم الانضمام: |
edsbas.46040028 |
قاعدة البيانات: |
BASE |