Academic Journal

The Density Formula: One Lemma to Bound Them All

التفاصيل البيبلوغرافية
العنوان: The Density Formula: One Lemma to Bound Them All
المؤلفون: Kaufmann, Michael, Klemz, Boris, Knorr, Kristin, M. Reddy, Meghana, Schröder, Felix, Ueckerdt, Torsten
المساهمون: Michael Kaufmann and Boris Klemz and Kristin Knorr and Meghana M. Reddy and Felix Schröder and Torsten Ueckerdt
بيانات النشر: Schloss Dagstuhl – Leibniz-Zentrum für Informatik
سنة النشر: 2024
المجموعة: DROPS - Dagstuhl Research Online Publication Server (Schloss Dagstuhl - Leibniz Center for Informatics )
مصطلحات موضوعية: beyond-planar, density, fan-planar, fan-crossing, right-angle crossing, quasiplanar
الوصف: We introduce the Density Formula for (topological) drawings of graphs in the plane or on the sphere, which relates the number of edges, vertices, crossings, and sizes of cells in the drawing. We demonstrate its capability by providing several applications: we prove tight upper bounds on the edge density of various beyond-planar graph classes, including so-called k-planar graphs with k = 1,2, fan-crossing/fan-planar graphs, k-bend RAC-graphs with k = 0,1,2, quasiplanar graphs, and k^+-real face graphs. In some cases (1-bend and 2-bend RAC-graphs and fan-crossing/fan-planar graphs), we thereby obtain the first tight upper bounds on the edge density of the respective graph classes. In other cases, we give new streamlined and significantly shorter proofs for bounds that were already known in the literature. Thanks to the Density Formula, all of our proofs are mostly elementary counting and mostly circumvent the typical intricate case analysis found in earlier proofs. Further, in some cases (simple and non-homotopic quasiplanar graphs), our alternative proofs using the Density Formula lead to the first tight lower bound examples.
نوع الوثيقة: article in journal/newspaper
conference object
وصف الملف: application/pdf
اللغة: English
Relation: Is Part Of LIPIcs, Volume 320, 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024); https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GD.2024.7
DOI: 10.4230/LIPIcs.GD.2024.7
الاتاحة: https://doi.org/10.4230/LIPIcs.GD.2024.7
https://nbn-resolving.org/urn:nbn:de:0030-drops-212913
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GD.2024.7
Rights: https://creativecommons.org/licenses/by/4.0/legalcode
رقم الانضمام: edsbas.45F8EA8
قاعدة البيانات: BASE
الوصف
DOI:10.4230/LIPIcs.GD.2024.7