Academic Journal

Classification accuracies, using the manifold-based method, for the randomly selected neighborhoods with centers of the indicated morphological type.

التفاصيل البيبلوغرافية
العنوان: Classification accuracies, using the manifold-based method, for the randomly selected neighborhoods with centers of the indicated morphological type.
المؤلفون: Michael W. Reimann (11938692), Henri Riihimäki (11938695), Jason P. Smith (9351170), Jānis Lazovskis (11938698), Christoph Pokorny (11938701), Ran Levi (11938704)
سنة النشر: 2022
المجموعة: Smithsonian Institution: Digital Repository
مصطلحات موضوعية: Neuroscience, Science Policy, Environmental Sciences not elsewhere classified, Biological Sciences not elsewhere classified, Information Systems not elsewhere classified, related brain regions, constraint remains unclear, vivo spike train, method performs better, local synaptic connectivity, determining stimulus identity, detailed microcircuit model, dimensional spiking activity, lower dimensional manifold, dimensional space, spike trains, dimension manifold, alternative method, %22">xlink ">, successfully decoded, sampled groups, recurrent connectivity, realistic sources, perform worse, movement intention, mechanism enforcing, encoding depends, different stimuli, classical approach
الوصف: Grey bars and error bars: mean and std. Blue dots: individual neighborhoods. (PDF)
نوع الوثيقة: article in journal/newspaper
اللغة: unknown
Relation: https://figshare.com/articles/journal_contribution/Classification_accuracies_using_the_manifold-based_method_for_the_randomly_selected_neighborhoods_with_centers_of_the_indicated_morphological_type_/18292479
DOI: 10.1371/journal.pone.0261702.s006
الاتاحة: https://doi.org/10.1371/journal.pone.0261702.s006
Rights: CC BY 4.0
رقم الانضمام: edsbas.44BA416F
قاعدة البيانات: BASE
الوصف
DOI:10.1371/journal.pone.0261702.s006