Unsupervised interpretable representation learning for singing voice separation

التفاصيل البيبلوغرافية
العنوان: Unsupervised interpretable representation learning for singing voice separation
المؤلفون: Mimilakis, S.I., Drossos, K., Schuller, G.
سنة النشر: 2020
المجموعة: Publikationsdatenbank der Fraunhofer-Gesellschaft
Time: 621, 006
الوصف: S.1412-1416 ; In this work, we present a method for learning interpretable music signal representations directly from waveform signals. Our method can be trained using unsupervised objectives and relies on the denoising auto-encoder model that uses a simple sinusoidal model as decoding functions to reconstruct the singing voice. To demonstrate the benefits of our method, we employ the obtained representations to the task of informed singing voice separation via binary masking, and measure the obtained separation quality by means of scale-invariant signal to distortion ratio. Our findings suggest that our method is capable of learning meaningful representations for singing voice separation, while preserving conveniences of the the short-time Fourier transform like non-negativity, smoothness, and reconstruction subject to time-frequency masking, that are desired in audio and music source separation.
نوع الوثيقة: conference object
اللغة: English
Relation: European Signal Processing Conference (EUSIPCO) 2020; European Signal Processing Conference (EUSIPCO) 2021; 28th European Signal Processing Conference, EUSIPCO 2020. Proceedings; https://publica.fraunhofer.de/handle/publica/411824
DOI: 10.23919/Eusipco47968.2020.9287352
الاتاحة: https://publica.fraunhofer.de/handle/publica/411824
https://doi.org/10.23919/Eusipco47968.2020.9287352
رقم الانضمام: edsbas.43B9AB94
قاعدة البيانات: BASE
الوصف
DOI:10.23919/Eusipco47968.2020.9287352