Academic Journal

A new approach to the interpretation of XRF spectral imaging data using neural networks

التفاصيل البيبلوغرافية
العنوان: A new approach to the interpretation of XRF spectral imaging data using neural networks
المؤلفون: Kogou, Sotiria, Lee, Lynn, Shahtahmassebi, Golnaz, Liang, Haida
المصدر: X-Ray Spectrometry ; volume 50, issue 4, page 310-319 ; ISSN 0049-8246 1097-4539
بيانات النشر: Wiley
سنة النشر: 2020
المجموعة: Wiley Online Library (Open Access Articles via Crossref)
الوصف: Self‐organising map (SOM), an unsupervised machine learning algorithm based on neural networks, is applied to introduce a novel approach for the analysis of XRF spectral imaging data. This method automatically reduced hundreds of thousands of XRF spectra in a spectral image dataset to a handful of distinct clusters that share similar spectra. In this study, we show how clustering and the combination of spatial and spectral information can be used to aid materials identification and deduce the paint sequence. The efficiency and accuracy of the method is presented through the analysis of a Peruvian watercolour painting from the Getty Research Institute collection. Confirmation of the interpretation was provided by complementary non‐invasive techniques, such as optical microscopy, reflectance and Raman spectroscopies.
نوع الوثيقة: article in journal/newspaper
اللغة: English
DOI: 10.1002/xrs.3188
الاتاحة: http://dx.doi.org/10.1002/xrs.3188
https://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2Fxrs.3188
https://onlinelibrary.wiley.com/doi/pdf/10.1002/xrs.3188
https://onlinelibrary.wiley.com/doi/full-xml/10.1002/xrs.3188
Rights: http://creativecommons.org/licenses/by/4.0/
رقم الانضمام: edsbas.4104559B
قاعدة البيانات: BASE