Academic Journal

Predicting human mobility via Graph Convolutional Dual-attentive Networks

التفاصيل البيبلوغرافية
العنوان: Predicting human mobility via Graph Convolutional Dual-attentive Networks
المؤلفون: Dang, Weizhen, Wang, Haibo, Pan, Shirui, Zhang, Pei, Zhou, Chuan, Chen, Xin, Wang, Jilong
المساهمون: Nagarkar, Parth
المصدر: Dang , W , Wang , H , Pan , S , Zhang , P , Zhou , C , Chen , X & Wang , J 2022 , Predicting human mobility via Graph Convolutional Dual-attentive Networks . in P Nagarkar (ed.) , Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining . Association for Computing Machinery (ACM) , New York NY USA , pp. 192-200 , ACM International Conference on Web Search and Data Mining 2022 , Online , United States of America , 21/02/22 . https://doi.org/10.1145/3488560.3498400
بيانات النشر: Association for Computing Machinery (ACM)
سنة النشر: 2022
مصطلحات موضوعية: Attention mechanism, Graph convolution, Mobility prediction, Sequential modeling
الوصف: Human mobility prediction is of great importance for various applications such as smart transportation and personalized recommender systems. Although many traditional pattern-based methods and deep models ($e.g.,$ recurrent neural networks) based methods have been developed for this task, they essentially do not well cope with the sparsity and inaccuracy of trajectory data and the complicated high-order nature of the sequential dependency, which are typical challenges in mobility prediction. To solve the problems, this paper proposes a novel framework named G raph C onvolutional D ual-a ttentive N etworks (GCDAN), which consists of two modules: spatio-temporal embedding and trajectory encoder-decoder. The first module employs a bidirectional diffusion graph convolution to preserve the spatial dependency in the location embedding. The second module employs a dual-attentive mechanism based on a Sequence to Sequence architecture to effectively extract the long-range sequential dependency within a trajectory and the correlation between different trajectories for predictions. Extensive experiments on three real-world datasets show that GCDAN achieves significant performance gain compared with state-of-the-art baselines.
نوع الوثيقة: article in journal/newspaper
وصف الملف: application/pdf
اللغة: English
ردمك: 978-1-4503-9132-0
1-4503-9132-X
Relation: urn:ISBN:9781450391320
DOI: 10.1145/3488560.3498400
الاتاحة: https://research.monash.edu/en/publications/05db6a89-f6dc-46f6-a445-f6bf887f2719
https://doi.org/10.1145/3488560.3498400
https://researchmgt.monash.edu/ws/files/404751600/374415544_oa.pdf
http://www.scopus.com/inward/record.url?scp=85125813580&partnerID=8YFLogxK
Rights: info:eu-repo/semantics/openAccess
رقم الانضمام: edsbas.40DCD0BC
قاعدة البيانات: BASE
الوصف
ردمك:9781450391320
145039132X
DOI:10.1145/3488560.3498400