Academic Journal

On Composition Ideals and Dual Ideals of Bounded Holomorphic Mappings

التفاصيل البيبلوغرافية
العنوان: On Composition Ideals and Dual Ideals of Bounded Holomorphic Mappings
المؤلفون: Cabrera Padilla, María De Gádor, Jiménez Vargas, Antonio, Ruiz Casternado, David
سنة النشر: 2023
المجموعة: Universidad de Almería: Repositorio Institucional
مصطلحات موضوعية: Holomorphic mapping, Operator ideal, Linearization, Factorization theorems
الوصف: Applying a linearization theorem due to Mujica (Trans Am Math Soc 324:867–887, 1991), we study the ideals of bounded holomorphic mappings I ◦H∞ generated by composition with an operator ideal I. The bounded-holomorphic dual ideal of I is introduced and its elements are characterized as those that admit a factorization through Idual. For complex Banach spaces E and F, we also analyze new ideals of bounded holomorphic mappings from an open subset U ⊆ E to F such as pintegral holomorphic mappings and p-nuclear holomorphic mappings with 1 ≤ p < ∞. We prove that every p-integral (p-nuclear) holomorphic mapping from U to F has relatively weakly compact (compact) range.
نوع الوثيقة: article in journal/newspaper
اللغة: English
تدمد: 1422-6383
Relation: http://hdl.handle.net/10835/15143; https://doi.org/10.1007/s00025-023-01868-9
DOI: 10.1007/s00025-023-01868-9
الاتاحة: http://hdl.handle.net/10835/15143
https://doi.org/10.1007/s00025-023-01868-9
Rights: Attribution-NonCommercial-NoDerivatives 4.0 Internacional ; http://creativecommons.org/licenses/by-nc-nd/4.0/ ; info:eu-repo/semantics/openAccess
رقم الانضمام: edsbas.4063EFD0
قاعدة البيانات: BASE
الوصف
تدمد:14226383
DOI:10.1007/s00025-023-01868-9