Academic Journal

Weak and renormalized solutions for anisotropic Neumann problems with degenerate coercivity

التفاصيل البيبلوغرافية
العنوان: Weak and renormalized solutions for anisotropic Neumann problems with degenerate coercivity
المؤلفون: Benboubker, Mohamed Badr, Benkhalou, Hayat, Hjiaj, Hassane
المصدر: Boletim da Sociedade Paranaense de Matemática; Vol 41 (2023); 1-25 ; Boletim da Sociedade Paranaense de Matemática; v. 41 (2023); 1-25 ; 2175-1188 ; 0037-8712
بيانات النشر: Sociedade Paranaense de Matemática
سنة النشر: 2022
المجموعة: Universidade Estadual de Maringá: Portal de Periódicos da UEM
الوصف: In this work, we study the following quasilinear Neumann boundary-value problem$$\left\{\begin{array}{ll}\displaystyle -\sum^{N}_{i=1} D^{i}(a_{i}(x,u,\nabla u))+|u|^{p_{0}-2} u= f(x,u,\nabla u) & \mbox{in } \ \quad \Omega,\\\displaystyle \sum^{N}_{i=1} a_{i}(x,u,\nabla u)\cdot n_{i} = g(x) & \mbox{on } \ \quad \partial\Omega,\end{array}\right.$$where $\Omega$ is a bounded open domain in $\>I\!\!R^{N}$, $(N\geq 2)$. We prove the existence of a weak solution for $f \in L^{\infty}(\Omega)$ and $g\in L^{\infty}(\partial\Omega)$ and the existence of renormalized solutions for $L^{1}$-data $f$ and $g$. The functional setting involves anisotropic Sobolev spaces with constants exponents.
نوع الوثيقة: article in journal/newspaper
وصف الملف: application/pdf
اللغة: English
Relation: http://eduemojs.uem.br/ojs/index.php/BSocParanMat/article/view/62362/751375155412; http://eduemojs.uem.br/ojs/index.php/BSocParanMat/article/view/62362
DOI: 10.5269/bspm.62362
الاتاحة: http://eduemojs.uem.br/ojs/index.php/BSocParanMat/article/view/62362
https://doi.org/10.5269/bspm.62362
Rights: Copyright (c) 2022 Boletim da Sociedade Paranaense de Matemática ; http://creativecommons.org/licenses/by/4.0
رقم الانضمام: edsbas.3FB199A5
قاعدة البيانات: BASE