Dissertation/ Thesis

Forward uncertainty quantification with special emphasis on a Bayesian active learning perspective

التفاصيل البيبلوغرافية
العنوان: Forward uncertainty quantification with special emphasis on a Bayesian active learning perspective
المؤلفون: Dang, Chao
المساهمون: Beer, Michael
بيانات النشر: Institutionelles Repositorium der Leibniz Universität Hannover
سنة النشر: 2023
المجموعة: Institutional Repository of Leibniz Universität Hannover
مصطلحات موضوعية: Uncertainty propagation, Structural reliability analysis, Bayesian active learning, Bayesian inference, Bayesian quadrature, Bayesian optimization, Active learning, Gaussian process, Numerical uncertainty, Line sampling, Uncertainty-Propagation, Strukturzuverlässigkeitsanalyse, Bayesian-active-learning, Bayesian-Inference, Bayesian-Quadrature, Bayesian-Optimization, Active-learning, Gauß-Prozesse, Numerische Unsicherheiten, Line-Sampling, ddc:600
الوصف: Uncertainty quantification (UQ) in its broadest sense aims at quantitatively studying all sources of uncertainty arising from both computational and real-world applications. Although many subtopics appear in the UQ field, there are typically two major types of UQ problems: forward and inverse uncertainty propagation. The present study focuses on the former, which involves assessing the effects of the input uncertainty in various forms on the output response of a computational model. In total, this thesis reports nine main developments in the context of forward uncertainty propagation, with special emphasis on a Bayesian active learning perspective. The first development is concerned with estimating the extreme value distribution and small first-passage probabilities of uncertain nonlinear structures under stochastic seismic excitations, where a moment-generating function-based mixture distribution approach (MGF-MD) is proposed. As the second development, a triple-engine parallel Bayesian global optimization (T-PBGO) method is presented for interval uncertainty propagation. The third contribution develops a parallel Bayesian quadrature optimization (PBQO) method for estimating the response expectation function, its variable importance and bounds when a computational model is subject to hybrid uncertainties in the form of random variables, parametric probability boxes (p-boxes) and interval models. In the fourth research, of interest is the failure probability function when the inputs of a performance function are characterized by parametric p-boxes. To do so, an active learning augmented probabilistic integration (ALAPI) method is proposed based on offering a partially Bayesian active learning perspective on failure probability estimation, as well as the use of high-dimensional model representation (HDMR) technique. Note that in this work we derive an upper-bound of the posterior variance of the failure probability, which bounds our epistemic uncertainty about the failure probability due to a kind of numerical ...
نوع الوثيقة: doctoral or postdoctoral thesis
اللغة: English
Relation: http://dx.doi.org/10.15488/14746; https://www.repo.uni-hannover.de/handle/123456789/14865
DOI: 10.15488/14746
الاتاحة: https://www.repo.uni-hannover.de/handle/123456789/14865
https://doi.org/10.15488/14746
Rights: Es gilt deutsches Urheberrecht. Das Dokument darf zum eigenen Gebrauch kostenfrei genutzt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. ; frei zugänglich
رقم الانضمام: edsbas.3F294D96
قاعدة البيانات: BASE