Book
MONARCH regional reanalysis of desert dust aerosols: an initial assessment
العنوان: | MONARCH regional reanalysis of desert dust aerosols: an initial assessment |
---|---|
المؤلفون: | di Tomaso, Enza, Escribano Alisio, Jeronimo, Basart, Sara, Ginoux, Paul, Macchia, Francesca, Barnaba, Francesca, Benincasa, Francesco, Bretonnière, Pierre-Antoine, Buñuel, Arnau, Castrillo Melguizo, Miguel, Cuevas Agulló, Emilio, Formenti, Paola, Gonçalves Ageitos, María, Jorba Casellas, Oriol, Klose, Martina, Mona, Lucia, Montané Pinto, Gilbert, Mytilinaios, Michail, Obiso, Vincenzo, Olid García, Miriam, Schutgens, Nick, Votsis, Athanasios, Werner, Ernest, Pérez García-Pando, Carlos |
المساهمون: | Universitat Politècnica de Catalunya. Departament d'Enginyeria de Projectes i de la Construcció, Barcelona Supercomputing Center |
بيانات النشر: | Springer |
سنة النشر: | 2023 |
المجموعة: | Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledge |
مصطلحات موضوعية: | Àrees temàtiques de la UPC::Desenvolupament humà i sostenible::Enginyeria ambiental, Àrees temàtiques de la UPC::Enginyeria mecànica::Mecànica de fluids, Dust control, Atmospheric aerosols, Dust, Aerosol regional reanalysis, Aerosol data assimilation, Modis deep blue, Aerosol speciation, Pols -- Control, Aerosols atmosfèrics |
الوصف: | Aerosol reanalyses are a well-established tool for monitoring aerosol trends, for validation and calibration of weather chemical models, as well as for the enhancement of strategies for environmental monitoring and hazard mitigation. By providing a consistent and complete data set over a sufficiently long period, they address the shortcomings of aerosol observational records in terms of temporal and spatial coverage and aerosol speciation. These shortcomings are particularly severe for dust aerosols. A 10-year dust aerosol regional reanalysis has been recently produced on the Barcelona Supercomputing Center HPC facilities at the high spatial resolution of 0.1°. Here we present a brief description and an initial assessment of this data set. An innovative dust optical depth data set, derived from the MODIS Deep Blue products, has been ingested in the dust module of the MONARCH model by means of a LETKF with a four-dimensional extension. MONARCH ensemble has been generated by applying combined meteorology and emission perturbations. This has been achieved using for each ensemble member different meteorological fields as initial and boundary conditions, and different emission schemes, in addition to stochastic perturbations of emission parameters, which we show is beneficial for dust data assimilation. We prove the consistency of the assimilation procedure by analyzing the departures of the assimilated observations from the model simulations for a two-month period. Furthermore, we show a comparison with AERONET coarse optical depth retrievals during a period of 2012, which indicates that the reanalysis data set is highly accurate. While further analysis and validation of the whole data set are ongoing, here we provide a first evidence for the reanalysis to be a useful record of dust concentration and deposition extending the existing observational-based information intended for mineral dust monitoring. ; We acknowledge the DustClim project which is part of ERA4CS, an ERA-NET initiated by JPI Climate, and funded by ... |
نوع الوثيقة: | book part |
وصف الملف: | 7 p.; application/pdf |
اللغة: | English |
ردمك: | 978-3-031-12785-4 3-031-12785-4 |
Relation: | https://link.springer.com/book/10.1007/978-3-031-12786-1; Di Tomaso, E. [et al.]. MONARCH regional reanalysis of desert dust aerosols: an initial assessment. A: "Air pollution modeling and its application XXVIII". Berlín: Springer, 2023, p. 241-247.; http://hdl.handle.net/2117/383484 |
DOI: | 10.1007/978-3-031-12786-1_33 |
الاتاحة: | http://hdl.handle.net/2117/383484 https://doi.org/10.1007/978-3-031-12786-1_33 |
Rights: | Open Access |
رقم الانضمام: | edsbas.3EAEF3AC |
قاعدة البيانات: | BASE |
ردمك: | 9783031127854 3031127854 |
---|---|
DOI: | 10.1007/978-3-031-12786-1_33 |