Academic Journal

Mosquito alert: leveraging citizen science to create a GBIF mosquito occurrence dataset

التفاصيل البيبلوغرافية
العنوان: Mosquito alert: leveraging citizen science to create a GBIF mosquito occurrence dataset
المؤلفون: Južnič-Zonta, Živko (Centre d'Estudis Avançats de Blanes), Mosquito Alert Community, Oltra, Aitana (Universitat Pompeu Fabra), Garriga, Joan (Centre d'Estudis Avançats de Blanes), Escobar, Agustí (Centre de Recerca Ecològica i Aplicacions Forestals), Palmer, John R. B. (Universitat Pompeu Fabra), Sanpera-Calbet, Isis (Universitat Pompeu Fabra), Eritja, Roger (Centre de Recerca Ecològica i Aplicacions Forestals), Mosquito Alert Digital Entomology Network, Bartumeus Ferre, Frederic (Centre d'Estudis Avançats de Blanes / entre de Recerca Ecològica i Aplicacions Forestals / Institució Catalana de Recerca i Estudis Avançats), Barzon, Luisa (Università degli Studi di Padova), Koopmans, Marion (Erasmus University Medical Center), Miranda, Miguel Ángel (University Balearic Islands), Della Torre, Alessandra (Sapienza University), Schaffner, Francis (Francis Schaffner Consultancy), Richter-Boix, Alex (Centre de Recerca Ecològica i Aplicacions Forestals)
المصدر: Giga Byte 2022 (2022)
بيانات النشر: BGI
Oxford University Press
سنة النشر: 2022
مصطلحات موضوعية: Ecology, Taxonomy, Biodiversity
الوصف: The Mosquito Alert dataset includes occurrence records of adult mosquitoes collected worldwide in 2014-2020 through Mosquito Alert, a citizen science system for investigating and managing disease-carrying mosquitoes. Records are linked to citizen science-submitted photographs and validated by entomologists to determine the presence of five targeted European mosquito vectors: Aedes albopictus, Ae. aegypti, Ae. japonicus, Ae. koreicus, and Culex pipiens. Most records are from Spain, reflecting Spanish national and regional funding, but since autumn 2020 substantial records from other European countries are included, thanks to volunteer entomologists coordinated by the AIM-COST Action, and to technological developments to increase scalability. Among other applications, the Mosquito Alert dataset will help develop citizen science-based early warning systems for mosquito-borne disease risk. It can also be reused for modelling vector exposure risk, or to train machine-learning detection and classification routines on the linked images, to assist with data validation and establishing automated alert systems.
نوع الوثيقة: article in journal/newspaper
وصف الملف: application/pdf
اللغة: English
Relation: isPartOf:https://phaidra.vetmeduni.ac.at/o:605[Open Access Publications]; https://phaidra.vetmeduni.ac.at/o:2728
DOI: 10.46471/gigabyte.54
الاتاحة: https://doi.org/10.46471/gigabyte.54
https://phaidra.vetmeduni.ac.at/o:2728
Rights: CC BY 4.0 International ; http://creativecommons.org/licenses/by/4.0/
رقم الانضمام: edsbas.3E76FC51
قاعدة البيانات: BASE