Academic Journal

Balancing Between Privacy and Utility for Affect Recognition Using Multitask Learning in Differential Privacy-Added Federated Learning Settings: Quantitative Study.

التفاصيل البيبلوغرافية
العنوان: Balancing Between Privacy and Utility for Affect Recognition Using Multitask Learning in Differential Privacy-Added Federated Learning Settings: Quantitative Study.
المؤلفون: Benouis, Mohamed, Andre, Elisabeth, Can, Yekta Said
المصدر: JMIR Ment Health ; ISSN:2368-7959 ; Volume:11
بيانات النشر: JMIR Publications
سنة النشر: 2024
المجموعة: PubMed Central (PMC)
مصطلحات موضوعية: affective computing, data privacy, digital mental health, emotional well-being, empathetic sensors, ethics, federated learning, multitask learning, physiological signals, privacy, privacy preservation, sensitive data, wearable sensors, wearables
الوصف: The rise of wearable sensors marks a significant development in the era of affective computing. Their popularity is continuously increasing, and they have the potential to improve our understanding of human stress. A fundamental aspect within this domain is the ability to recognize perceived stress through these unobtrusive devices.
نوع الوثيقة: article in journal/newspaper
اللغة: English
Relation: https://doi.org/10.2196/60003; https://pubmed.ncbi.nlm.nih.gov/39714484; https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11684349/
DOI: 10.2196/60003
الاتاحة: https://doi.org/10.2196/60003
https://pubmed.ncbi.nlm.nih.gov/39714484
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11684349/
Rights: © Mohamed Benouis, Elisabeth Andre, Yekta Said Can. Originally published in JMIR Mental Health (https://mental.jmir.org).
رقم الانضمام: edsbas.3DBC47A6
قاعدة البيانات: BASE