Academic Journal

MULTILAYERED PERIODICAL STRUCTURES WITH ELASTICALLY STRAINED GESISN LAYERS AND GESISN NANOISLANDS ; УПРУГОНАПРЯЖЕННЫЕ СЛОИ И НАНООСТРОВКИ GESISN В МНОГОСЛОЙНЫХ ПЕРИОДИЧЕСКИХ СТРУКТУРАХ

التفاصيل البيبلوغرافية
العنوان: MULTILAYERED PERIODICAL STRUCTURES WITH ELASTICALLY STRAINED GESISN LAYERS AND GESISN NANOISLANDS ; УПРУГОНАПРЯЖЕННЫЕ СЛОИ И НАНООСТРОВКИ GESISN В МНОГОСЛОЙНЫХ ПЕРИОДИЧЕСКИХ СТРУКТУРАХ
المؤلفون: V. A. Timofeev, A. I. Nikiforov, A. R. Tuktamyshev, A. A. Bloshkin, V. I. Mashanov, S. A. Teys, I. D. Loshkarev, N. A. Baidakova, В. А. Тимофеев, А. И. Никифоров, А. Р. Туктамышев, А. А. Блошкин, В. И. Машанов, С. А. Тийс, И. Д. Лошкарев, Н. А. Байдакова
المصدر: Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering; Том 20, № 1 (2017); 38-44 ; Известия высших учебных заведений. Материалы электронной техники; Том 20, № 1 (2017); 38-44 ; 2413-6387 ; 1609-3577 ; 10.17073/1609-3577-2017-1
بيانات النشر: MISIS
سنة النشر: 2018
المجموعة: Materials of Electronics Engineering (E-Journal) / Известия высших учебных заведений. Материалы электронной техники
مصطلحات موضوعية: зонная диаграмма, nanoislands, epitaxy, diffraction, scanning tunnel microscopy, X−ray diffractometry, photoluminescence, band diagram, наноостровки, эпитаксия, дифракция, сканирующая туннельная микроскопия, рентгеновская дифрактометрия, фотолюминесценция
الوصف: This work deals with elastically strained GeSiSn films and GeSiSn islands. Kinetic diagram of GeSiSn growth at different lattice mismatches between GeSiSn and Si has been established. Multilayer periodic structures with pseudomorphic GeSiSn layers and GeSiSn island array have been obtained. The density of the islands in the GeSiSn layer reaches 1.8 ⋅ 1012 cm−2 at an average island size of 4 nm. Analysis of the rocking curves showed that the structures contain smooth heterointerfaces, and strong changes of composition and thickness from period to period have not been found. Photoluminescence has been demonstrated and calculation of band diagram in the model solid theory approach has been carried out. Luminescence for the sample with pseudomorphic Ge0.315Si0.65Sn0.035 layers in narrow range of 0.71—0.82 eV is observed with the maximum intensity near 0.78 eV corresponding to a 1.59 µm wavelength. Based on a band diagram calculation for Si/ Ge0.315Si0.65Sn0.035/Si heterocomposition, one can conclud that luminescence with a photon energy of 0.78 eV corresponds to interband transitions between the X−valley in the Si and the heavy hole subband in the Ge0.315Si0.65Sn0.035 layer.
نوع الوثيقة: article in journal/newspaper
وصف الملف: application/pdf
اللغة: Russian
Relation: https://met.misis.ru/jour/article/view/244/211; Soref R. A., Perry C. H. Predirect bandgap of the new semiconductor SiGeSn // J. Appl. Phys. − 1991. − V. 69, N 1. − P. 539—541. DOI:10.1063/1.347704; Moontragoon P., Ikonić Z., Harrison P. Band structure calculation of Si—Ge—Sn alloys: achieving direct bandgap materials // Semicond. Sci. Technol. − 2007. − V. 22, N 7. − P. 742—748. DOI:10.1088/0268−1242/22/7/012; Du W., Ghetmiri S. A., Conley B. R., Mosleh A., Nazzal A., Soref R. A., Sun G., Tolle J., Margetis J., Naseem H. A., Yu S.−Q. Competition of optical transitions between direct and indirect bandgaps in Ge1−xSnx // Appl. Phys. Lett. − 2014. − V. 105, N 5. − P. 051104−1—4. DOI:10.1063/1.4892302; Senaratne C. L., Gallagher J. D., Aoki T., Kouvetakis J., Menéndez J. Advances in light emission from group−IV alloys via lattice engineering and n−type doping based on custom−designed chemistries // Chem. Mater. − 2014. − V. 26, N 20. − P. 6033—6041. DOI:10.1021/cm502988y; Wirths S., Buca D., Mantl S. Si—Ge—Sn alloys: From growth to applications // Progress in crystal growth and characterization of materials. − 2016. − V. 62, N 1. − P. 1—39. DOI:10.1016/j.pcrysgrow.2015.11.001; Wirths S., Geiger R., von den Driesch N., Mussler G., Stoica T., Mantl S., Ikonic Z., Luysberg M., Chiussi S., Hartman J. M., Sigg H., Faist J., Buca D., Grützmacher D. Lasing in direct−bandgap GeSn alloy grown on Si // Nature Photonics. − 2015. − V. 9. − P. 88—92. DOI:10.1038/nphoton.2014.321; Asano T., Terashima T., Yamaha T., Kurosawa M., Takeuchi W., Taoka N., Nakatsuka O., Zaima S. Epitaxial growth and crystalline properties of Ge1−x−ySixSny on Ge(001) substrates // Solid−State Electronics. − 2015. − V. 110. − P. 49—53. DOI:10.1016/j.sse.2015.01.006; Esteves R. J. A., Hafiz S., Demchenko D. O., Özgur Ü., Arachchige I. U. Ultra−small Ge1−xSnx quantum dots with visible photoluminescence // Chem. Commun. − 2016. − V. 52, N 78. − P. 11665—11668. DOI:10.1039/c6cc04242b; Wirths S., Tiedemann A. T., Ikonic Z., Harrison P., Holländer B., Stoica T., Mussler G., Myronov M., Hartmann J. M., Grützmacher D., Buca D., Mantl S. Band engineering and growth of tensile strained Ge/(Si)GeSn heterostructures for tunnel field effect transistors // Appl. Phys. Lett. − 2013. − V. 102, N 19. − P. 192103−1—4. DOI:10.1063/1.4805034; von den Driesch N., Stange D., Wirths S., Mussler G., Holländer B., Ikonic Z., Hartmann J. M., Stoica T., Mantl S., Grützmacher D., Buca D. Direct bandgap group IV epitaxy on Si for laser applications // Chem. Mater. − 2015. − V. 27, N 13. − P. 4693—4702. DOI:10.1021/acs.chemmater.5b01327; Kato K., Asano T., Taoka N., Sakashita M., Takeuchi W., Nakatsuka O., Zaima S. Robustness of Sn precipitation during thermal oxidation of Ge1−xSnx on Ge(001) // Jpn. J. Appl. Phys. − 2014. − V. 53, N 8S1. − P. 08LD04−1—8. DOI:10.7567/JJAP.53.08LD04; Taoka N., Asano T., Yamaha T., Terashima T., Nakatsuka O., Costina I., Zaumseil P., Capellini G., Zaima S., Schroeder T. Non− uniform depth distributions of Sn concentration induced by Sn migration and desorption during GeSnSi layer formation // Appl. Phys. Lett. − 2015. − V. 106, N 6. − P. 061107−1—5. DOI:10.1063/1.4908121; van de Walle C. G. Band lineups and deformation potentials in the model−solid theory // Phys. Rev. B. − 1989. − V. 39, N 3. − P. 1871—1883. DOI:10.1103/PhysRevB.39.1871; El Kurdi M., Sauvage S., Fishman G., Boucaud P. Band− edge alignment of SiGe/Si quantum wells and SiGe/Si self−assembled islands // Phys. Rev. B. − 2006. − V. 73, N 19. − P. 195327−1—9. DOI:10.1103/PhysRevB.73.195327; Jaros M. Simple analytic model for heterojunction band offsets // Phys. Rev. B. − 1988. − V. 37, N 12. − P. 7112—7114. DOI:10.1103/PhysRevB.37.7112; Moontragoon P., Soref R., Ikonic Z. The direct and indirect bandgaps of unstrained SixGe1−x−ySny and their photonic device applications // J. Appl. Phys. − 2012. − V. 112, N 7. − P. 073106−1—8. DOI:10.1063/1.4757414; Fischer I. A., Wendav T., Augel L., Jitpakdeebodin S., Oliveira F., Benedetti A., Stefanov S., Chiussi S., Capellini G., Busch K., Schulze J. Growth and characterization of SiGeSn quantum well photodiodes // Optics Express. − 2015. − V. 23, N 19. − P. 25048—25057. DOI:10.1364/OE.23.025048; Attiaoui A., Moutanabbir O. Indirect−to−direct band gap transition in relaxed and strained Ge1−x−ySixSny ternary alloys // J. Appl. Phys. − 2014. − V. 116, N 6. − P. 063712−1—15. DOI:10.1063/1.4889926; Тимофеев В. А., Никифоров А. И., Туктамышев А. Р., Есин М. Ю., Машанов В. И., Гутаковский А. К., Байдакова Н. А. Напряженные многослойные структуры с псевдоморфными слоями GeSiSn // Физика и техника полупроводников. − 2016. − Т. 50, № 12. − С. 1610—1614.; Nikiforov A. I., Mashanov V. I., Timofeev V. A., Pchelyakov O. P., Cheng H.−H. Reflection high energy electron diffraction studies on SixSnyGe1−x−y on Si(100) molecular beam epitaxial growth // Thin Solid Films. − 2014. − V. 557. − P. 188—191. DOI:10.1016/j. tsf.2013.11.128; https://met.misis.ru/jour/article/view/244
DOI: 10.17073/1609-3577-2017-1-38-44
الاتاحة: https://met.misis.ru/jour/article/view/244
https://doi.org/10.17073/1609-3577-2017-1-38-44
Rights: Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with embargo 1 year, then the work will be licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). ; Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой автороские права и предоставляют журналу право первой публикации работы, которая по истечении 12 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access).
رقم الانضمام: edsbas.3CE89DB0
قاعدة البيانات: BASE
الوصف
DOI:10.17073/1609-3577-2017-1-38-44