CONTINUOUS LAMBERTIAN SHAPE FROM SHADING: A PRIMAL-DUAL ALGORITHM

التفاصيل البيبلوغرافية
العنوان: CONTINUOUS LAMBERTIAN SHAPE FROM SHADING: A PRIMAL-DUAL ALGORITHM
المؤلفون: Ennaji, Hamza, Igbida, Noureddine, Nguyen, Van, Thanh
المساهمون: XLIM (XLIM), Université de Limoges (UNILIM)-Centre National de la Recherche Scientifique (CNRS), Department of Mathematics, University of Quynhon, 170 An Duong Vuong, Qui Nhon, Vietnam
المصدر: https://hal.science/hal-03020331 ; 2020.
بيانات النشر: HAL CCSD
سنة النشر: 2020
المجموعة: Université de Limoges: HAL
مصطلحات موضوعية: [MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP], [MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]
الوصف: The continuous Lambertian shape from shading is studied using a PDE approach in terms of Hamilton-Jacobi equations. The latter will then be characterized by a maximization problem. In this paper we show the convergence of discretization and propose to use the wellknown Chambolle-Pock primal-dual algorithm to solve numerically the shape from shading problem. The saddle-point structure of the problem makes the Chambolle-Pock algorithm suitable to approximate solutions of the discretized problems.
نوع الوثيقة: report
اللغة: English
Relation: hal-03020331; https://hal.science/hal-03020331; https://hal.science/hal-03020331/document; https://hal.science/hal-03020331/file/sfs_october_15.pdf
الاتاحة: https://hal.science/hal-03020331
https://hal.science/hal-03020331/document
https://hal.science/hal-03020331/file/sfs_october_15.pdf
Rights: info:eu-repo/semantics/OpenAccess
رقم الانضمام: edsbas.3C4C3544
قاعدة البيانات: BASE