Academic Journal

OM-2: AN ONLINE MULTI-CLASS MULTI-KERNEL LEARNING ALGORITHM

التفاصيل البيبلوغرافية
العنوان: OM-2: AN ONLINE MULTI-CLASS MULTI-KERNEL LEARNING ALGORITHM
المؤلفون: Jie Luo, Francesco Orabona, Marco Fornoni, Barbara Caputo, Nicolo Cesa-bianchi, Luo Jie, Nicolò Cesa-bianchi
المساهمون: The Pennsylvania State University CiteSeerX Archives
المصدر: http://publications.idiap.ch/downloads/reports/2010/Luo_Idiap-RR-06-2010.pdf.
سنة النشر: 2010
المجموعة: CiteSeerX
الوصف: Efficient learning from massive amounts of information is a hot topic in computer vision. Available training sets contain many examples with several visual descriptors, a setting in which current batch approaches are typically slow and does not scale well. In this work we introduce a theoretically motivated and efficient online learning algorithm for the Multi Kernel Learning (MKL) problem. For this algorithm we prove a theoretical bound on the number of multiclass mistakes made on any arbitrary data sequence. Moreover, we empirically show that its performance is on par, or better, than standard batch MKL (e.g. SILP, SimpleMKL) algorithms. 1.
نوع الوثيقة: text
وصف الملف: application/pdf
اللغة: English
Relation: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.174.896; http://publications.idiap.ch/downloads/reports/2010/Luo_Idiap-RR-06-2010.pdf
الاتاحة: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.174.896
http://publications.idiap.ch/downloads/reports/2010/Luo_Idiap-RR-06-2010.pdf
Rights: Metadata may be used without restrictions as long as the oai identifier remains attached to it.
رقم الانضمام: edsbas.39D908B7
قاعدة البيانات: BASE