Academic Journal

Interoperability of statistical models in pandemic preparedness: principles and reality

التفاصيل البيبلوغرافية
العنوان: Interoperability of statistical models in pandemic preparedness: principles and reality
المؤلفون: Nicholson, George, Blangiardo, Marta, Briers, Mark, Diggle, Peter J, Fjelde, Tor Erlend, Ge, Hong, Goudie, Robert JB, Jersakova, Radka, King, Ruairidh E, Lehmann, Brieuc CL, Mallon, Ann-Marie, Padellini, Tullia, Teh, Yee Whye, Holmes, Chris, Richardson, Sylvia
بيانات النشر: Institute of Mathematical Statistics
Mrc Biostatistics Unit
//doi.org/10.1214/22-sts854
Statistical Science
سنة النشر: 2022
المجموعة: Apollo - University of Cambridge Repository
مصطلحات موضوعية: stat.ME, stat.AP, 62P10
الوصف: We present "interoperability" as a guiding framework for statistical modelling to assist policy makers asking multiple questions using diverse datasets in the face of an evolving pandemic response. Interoperability provides an important set of principles for future pandemic preparedness, through the joint design and deployment of adaptable systems of statistical models for disease surveillance using probabilistic reasoning. We illustrate this through case studies for inferring spatial-temporal coronavirus disease 2019 (COVID-19) prevalence and reproduction numbers in England.
نوع الوثيقة: article in journal/newspaper
وصف الملف: application/pdf; video/mp4
اللغة: English
Relation: https://www.repository.cam.ac.uk/handle/1810/335891
DOI: 10.17863/CAM.83325
الاتاحة: https://www.repository.cam.ac.uk/handle/1810/335891
https://doi.org/10.17863/CAM.83325
Rights: Attribution 4.0 International ; https://creativecommons.org/licenses/by/4.0/
رقم الانضمام: edsbas.391E9EC
قاعدة البيانات: BASE