Uncertainty-guided Source-free Domain Adaptation

التفاصيل البيبلوغرافية
العنوان: Uncertainty-guided Source-free Domain Adaptation
المؤلفون: Subhankar Roy, Martin Trapp, Andrea Pilzer, Juho Kannala, Nicu Sebe, Elisa Ricci, Arno Solin
المصدر: European Conference on Computer Vision 2022
بيانات النشر: Zenodo
سنة النشر: 2023
المجموعة: Zenodo
الوصف: Source-free domain adaptation (SFDA) aims to adapt a classifier to an unlabelled target data set by only using a pre-trained source model. However, the absence of the source data and the domain shift makes the predictions on the target data unreliable. We propose quantifying the uncertainty in the source model predictions and utilizing it to guide the target adaptation. For this, we construct a probabilistic source model by incorporating priors on the network parameters inducing a distribution over the model predictions. Uncertainties are estimated by employing a Laplace approximation and incorporated to identify target data points that do not lie in the source manifold and to down-weight them when maximizing the mutual information on the target data. Unlike recent works, our probabilistic treatment is computationally lightweight, decouples source training and target adaptation, and requires no specialized source training or changes of the model architecture. We show the advantages of uncertainty-guided SFDA over traditional SFDA in the closed-set and open-set settings and provide empirical evidence that our approach is more robust to strong domain shifts even without tuning.
نوع الوثيقة: conference object
اللغة: English
Relation: https://zenodo.org/communities/ai4media; https://doi.org/10.5281/zenodo.7566108; https://doi.org/10.5281/zenodo.7566109; oai:zenodo.org:7566109
DOI: 10.5281/zenodo.7566109
الاتاحة: https://doi.org/10.5281/zenodo.7566109
Rights: info:eu-repo/semantics/openAccess ; Creative Commons Attribution 4.0 International ; https://creativecommons.org/licenses/by/4.0/legalcode
رقم الانضمام: edsbas.37EBD7C7
قاعدة البيانات: BASE