Combining Variational Autoencoders and Transformer Language Models for Improved Password Generation

التفاصيل البيبلوغرافية
العنوان: Combining Variational Autoencoders and Transformer Language Models for Improved Password Generation
المؤلفون: Biesner, David, Cvejoski, Kostadin, Sifa, Rafet
سنة النشر: 2022
المجموعة: Publikationsdatenbank der Fraunhofer-Gesellschaft
مصطلحات موضوعية: language models, latent variable models, neural networks, passwords, text generation, transformers
الوصف: Password generation techniques have recently been explored by leveraging deep-learning natural language processing (NLP) algorithms. Previous work has raised the state of the art for password guessing algorithms significantly, by approaching the problem using either variational autoencoders with CNN-based encoder and decoder architectures or transformer-based architectures (namely GPT2) for text generation. In this work we aim to combine both paradigms, introducing a novel architecture that leverages the expressive power of transformers with the natural sampling approach to text generation of variational autoencoders. We show how our architecture generates state-of-the-art results in password matching performance across multiple benchmark datasets.
نوع الوثيقة: conference object
وصف الملف: application/pdf
اللغة: English
Relation: International Conference on Availability, Reliability and Security 2022; #PLACEHOLDER_PARENT_METADATA_VALUE#; Proceedings of the 17th International Conference on Availability, Reliability and Security, ARES 2022; ML2R; 1%7CS18038B, 01%7CS18038C; https://publica.fraunhofer.de/handle/publica/429936; https://doi.org/10.24406/publica-632
DOI: 10.1145/3538969.3539000
DOI: 10.24406/publica-632
الاتاحة: https://publica.fraunhofer.de/handle/publica/429936
https://doi.org/10.1145/3538969.3539000
https://doi.org/10.24406/publica-632
Rights: open access ; CC BY 4.0
رقم الانضمام: edsbas.377AC3F1
قاعدة البيانات: BASE