Academic Journal

Domain‐topic models with chained dimensions: Charting an emergent domain of a major oncology conference

التفاصيل البيبلوغرافية
العنوان: Domain‐topic models with chained dimensions: Charting an emergent domain of a major oncology conference
المؤلفون: Hannud Abdo, Alexandre, Cointet, Jean-Philippe, Bourret, Pascale, Cambrosio, Alberto
المساهمون: Laboratoire Interdisciplinaire Sciences, Innovations, Sociétés (LISIS), Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Gustave Eiffel, Garoa Hacker Clube, médialab (Sciences Po) (médialab), Sciences Po (Sciences Po), Sciences Economiques et Sociales de la Santé & Traitement de l'Information Médicale (SESSTIM - U1252 INSERM - Aix Marseille Univ - UMR 259 IRD), Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Institut National de la Santé et de la Recherche Médicale (INSERM), Institut des sciences de la santé publique Marseille (ISSPAM), McGill University = Université McGill Montréal, Canada, ANR-10-LABX-0097,SITES,Science, Technology and Innovation in Society(2010)
المصدر: ISSN: 2330-1635 ; Journal of the Association for Information Science and Technology ; https://hal.science/hal-03456769 ; Journal of the Association for Information Science and Technology, 2021, 73 (7), pp.992-1011. ⟨10.1002/asi.24606⟩.
بيانات النشر: HAL CCSD
ASIS&T/Wiley
سنة النشر: 2021
مصطلحات موضوعية: [SHS.INFO]Humanities and Social Sciences/Library and information sciences, [INFO.INFO-TT]Computer Science [cs]/Document and Text Processing
الوصف: Early Access NOV 2021 ; International audience ; This paper presents a contribution to the study of bibliographic corpora through science mapping. From a graph representation of documents and their textual dimension, stochastic block models can provide a simultaneous clustering of documents and words that we call a domain-topic model. Previous work investigated the resulting topics, or word clusters, while ours focuses on the study of the document clusters we call domains. To enable the description and interactive navigation of domains, we introduce measures and interfaces that consider the structure of the model to relate both types of clusters. We then present a procedure that extends the block model to cluster metadata attributes of documents, which we call a domain-chained model, noting that our measures and interfaces transpose to metadata clusters. We provide an example application to a corpus relevant to current science, technology and society (STS) research and an interesting case for our approach: the abstracts presented between 1995 and 2017 at the American Society of Clinical Oncology Annual Meeting, the major oncology research conference. Through a sequence of domain-topic and domain-chained models, we identify and describe a group of domains that have notably grown through the last decades and which we relate to the establishment of “oncopolicy” as a major concern in oncology.
نوع الوثيقة: article in journal/newspaper
اللغة: English
ردمك: 978-0-00-722059-5
0-00-722059-6
Relation: info:eu-repo/semantics/altIdentifier/pmid/35873705; PUBMED: 35873705; PUBMEDCENTRAL: PMC9299004; WOS: 000722059600001
DOI: 10.1002/asi.24606
الاتاحة: https://hal.science/hal-03456769
https://hal.science/hal-03456769v1/document
https://hal.science/hal-03456769v1/file/asi.24606.pdf
https://doi.org/10.1002/asi.24606
Rights: info:eu-repo/semantics/OpenAccess
رقم الانضمام: edsbas.37135026
قاعدة البيانات: BASE
الوصف
ردمك:9780007220595
0007220596
DOI:10.1002/asi.24606