Academic Journal

Advanced framework for microscopic and lane‐level macroscopic traffic parameters estimation from UAV video

التفاصيل البيبلوغرافية
العنوان: Advanced framework for microscopic and lane‐level macroscopic traffic parameters estimation from UAV video
المؤلفون: Ke, Ruimin, Feng, Shuo, Cui, Zhiyong, Wang, Yinhai
بيانات النشر: Wiley Periodicals, Inc.
The Institution of Engineering and Technology
سنة النشر: 2020
المجموعة: University of Michigan: Deep Blue
مصطلحات موضوعية: microscopic lane‐level macroscopic traffic parameters estimation, modern traffic sensing research, UAV‐based traffic sensing, aggregated macroscopic traffic data, higher‐resolution traffic data, traffic patterns, traffic flow characteristics, real‐world UAV video data, advanced traffic management, UAV video features, (B6135) Optical, image and video signal processing, (C3390C) Mobile robots, (C5260B) Computer vision and image processing techniques, (C5260D) Video signal processing, (C7445) Traffic engineering computing, parameter estimation, autonomous aerial vehicles, road vehicles, road traffic, object detection, traffic engineering computing, video signal processing, robot vision, advanced traffic sensing, aggregated macroscopic traffic parameters, Computer Science, Engineering
الوصف: Peer Reviewed ; http://deepblue.lib.umich.edu/bitstream/2027.42/166282/1/itr2bf00873.pdf
نوع الوثيقة: article in journal/newspaper
وصف الملف: application/pdf
اللغة: unknown
تدمد: 1751-956X
1751-9578
Relation: Ke, Ruimin; Feng, Shuo; Cui, Zhiyong; Wang, Yinhai (2020). "Advanced framework for microscopic and lane‐level macroscopic traffic parameters estimation from UAV video." IET Intelligent Transport Systems 14(7): 724-734.; https://hdl.handle.net/2027.42/166282; https://dx.doi.org/10.7302/205; IET Intelligent Transport Systems; Teutsch M. Krüger W.: ‘ Detection, segmentation, and tracking of moving objects in UAV videos ’. 2012 IEEE Ninth Int. Conf. on Advanced Video and Signal‐Based Surveillance, Beijing, people’s Republic of China, 2012, pp. 313 – 318; Barmpounakis E.N. Vlahogianni E.I. Golias J.C.: ‘ Unmanned aerial aircraft systems for transportation engineering: current practice and future challenges ’, Int. J. Transp. Sci. Technol., 2016, 5, ( 3 ), pp. 111 – 122; Kanistras K. Martins G. Rutherford M.J. et al.: ‘ Survey of unmanned aerial vehicles (UAVs) for traffic monitoring ’, in Valavanis Kimon P. Vachtsevanos George J. (Eds.): ‘ Handbook of unmanned aerial vehicles ’ ( Springer, USA 2015 ), pp. 2643 – 2666; Du Y. Zhao C. Li F. et al.: ‘ An open data platform for traffic parameters measurement via multirotor unmanned aerial vehicles video ’, J. Adv. Transp., 2017, 2017, pp. 1 – 12; Coifman B. McCord M. Mishalani R.G. et al.: ‘ Surface transportation surveillance from unmanned aerial vehicles ’. Proc. of the 83rd Annual Meeting of the Transportation Research Board, Washington, DC, USA, 2004; Angel A. Hickman M. Mirchandani P. et al.: ‘ Methods of analyzing traffic imagery collected from aerial platforms ’, IEEE Trans. Intell. Transp. Syst., 2003, 4, ( 2 ), pp. 99 – 107; Zhou H. Kong H. Wei L. et al.: ‘ Efficient road detection and tracking for unmanned aerial vehicle ’, IEEE Trans. Intell. Transp. Syst., 2015, 16, ( 1 ), pp. 297 – 309; Freeman B.S. Al Matawah J.A. Al Najjar M. et al.: ‘ Vehicle stacking estimation at signalized intersections with unmanned aerial systems ’, Int. J. Transp. Sci. Technol., 2019, 8, pp. 231 – 249; Ke R. Lutin J. Spears J. et al.: ‘ A cost‐effective framework for automated vehicle‐pedestrian near‐miss detection through onboard monocular vision ’. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 2017; Ke R. Pan Z. Pu Z. et al.: ‘ Roadway surveillance video camera calibration using standard shipping container ’. 2017 Int. Smart Cities Conf. (ISC2), Wuxi, People’s Republic of China, 2017, pp. 1 – 6; McCord M. Yang Y. Jiang Z. et al.: ‘ Estimating annual average daily traffic from satellite imagery and air photos: empirical results ’, Transp. Res. Rec. J. Transp. Res. Board, 2003, 1855, pp. 136 – 142; Salvo G. Caruso L. Scordo A.: ‘ Urban traffic analysis through an UAV ’, Proc. Soc. Behav. Sci., 2014, 111, pp. 1083 – 1091; Khan M.A. Ectors W. Bellemans T. et al.: ‘ Unmanned aerial vehicle–based traffic analysis: methodological framework for automated multivehicle trajectory extraction ’, Transp. Res. Rec. J. Transp. Res. Board, 2017, 2626, pp. 25 – 33; Kaufmann S. Kerner B.S. Rehborn H. et al.: ‘ Aerial observations of moving synchronized flow patterns in over‐saturated city traffic ’, Transp. Res. C, Emerg. Technol., 2018, 86, pp. 393 – 406; Cao X. Wu C. Lan J. et al.: ‘ Vehicle detection and motion analysis in low‐altitude airborne video under urban environment ’, IEEE Trans. Circuits Syst. Video Technol., 2011, 21, ( 10 ), pp. 1522 – 1533; Ammour N. Alhichri H. Bazi Y. et al.: ‘ Deep learning approach for car detection in UAV imagery ’, Remote Sens., 2017, 9, ( 4 ), p. 312; Xu Y. Yu G. Wu X. et al.: ‘ An enhanced Viola‐Jones vehicle detection method from unmanned aerial vehicles imagery ’, IEEE Trans Intell. Transp. Syst., 2017, 18, ( 7 ), pp. 1845 – 1856; Shastry A.C. Schowengerdt R.A.: ‘ Airborne video registration and traffic‐flow parameter estimation ’, IEEE Trans. Intell. Transp. Syst., 2005, 6, ( 4 ), pp. 391 – 405; Cao X. Gao C. Lan J. et al.: ‘ Ego motion guided particle filter for vehicle tracking in airborne videos ’, Neurocomputing, 2014, 124, pp. 168 – 177; Ke R. Kim S. Li Z. et al.: ‘ Motion‐vector clustering for traffic speed detection from UAV video ’. 2015 IEEE First Int. Smart Cities Conf. (ISC2), Guadalajara, Mexico, 2015, pp. 1 – 5; Ke R.: ‘ A novel framework for real‐time traffic flow parameter estimation from aerial videos ’. 2016; Ke R. Li Z. Kim S. et al.: ‘ Real‐time bidirectional traffic flow parameter estimation from aerial videos ’, IEEE Trans. Intell. Transp. Syst., 2017, 18, ( 4 ), pp. 890 – 901; Chen P. Zeng W. Yu G. et al.: ‘ Surrogate safety analysis of pedestrian‐vehicle conflict at intersections using unmanned aerial vehicle videos ’, J. Adv. Transp., 2017, 2017, pp. 1 – 12; Ke R. Li Z. Tang J. et al.: ‘ Real‐time traffic flow parameter estimation from UAV video based on ensemble classifier and optical flow ’, IEEE Trans. Intell. Transp. Syst., 2018, 99, pp. 1 – 11; Li J. Chen S. Zhang F. et al.: ‘ An adaptive framework for multi‐vehicle ground speed estimation in airborne videos ’, Remote Sens., 2019, 11, ( 10 ), p. 1241; Barmpounakis E.N. Vlahogianni E.I. Golias J.C. et al.: ‘ How accurate are small drones for measuring microscopic traffic parameters? ’, Transp. Lett., 2019, 11, pp. 332 – 340; Kim E.‐J. Park H.‐C. Ham S.‐W. et al.: ‘ Extracting vehicle trajectories using unmanned aerial vehicles in congested traffic conditions ’, J. Adv. Transp., 2019, 2019, 16 pages; Feng S. Wang X. Sun H. et al.: ‘ A better understanding of long‐range temporal dependence of traffic flow time series ’, Phys. A Stat. Mech. Appl., 2018, 492, pp. 639 – 650; Rodríguez‐Canosa G.R. Thomas S. Del Cerro J. et al.: ‘ A real‐time method to detect and track moving objects (DATMO) from unmanned aerial vehicles (UAVs) using a single camera ’, Remote Sens., 2012, 4, ( 4 ), pp. 1090 – 1111; Tsao P. Ik T.‐U. Chen G.‐W. et al.: ‘ Stitching aerial images for vehicle positioning and tracking ’. 2018 IEEE Int. Conf. on Data Mining Workshops (ICDMW), Singapore, 2018, pp. 616 – 623; Breckon T.P. Barnes S.E. Eichner M.L. et al.: ‘ Autonomous real‐time vehicle detection from a medium‐level UAV ’. Proc. 24th Int. Conf. on Unmanned Air Vehicle Systems, Bristol, UK, 2009, pp. 21 – 29; Gomaa A. Abdelwahab M.M. Abo‐Zahhad M.: ‘ Real‐time algorithm for simultaneous vehicle detection and tracking in aerial view videos ’. 2018 IEEE 61st Int. Midwest Symp. on Circuits and Systems (MWSCAS), Windsor, Canada, 2018, pp. 222 – 225; Najiya K.V Archana M.: ‘ UAV video processing for traffic surveillance with enhanced vehicle detection ’. 2018 Second Int. Conf. on Inventive Communication and Computational Technologies (ICICCT), Coimbatore, India, 2018, pp. 662 – 668; Li J. Ye D.H. Chung T. et al.: ‘ Multi‐target detection and tracking from a single camera in unmanned aerial vehicles (UAVs) ’. 2016 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), Daejeon, Republic of Korea, 2016, pp. 4992 – 4997; Carletti V. Greco A. Saggese A. et al.: ‘ Multi‐object tracking by flying cameras based on a forward‐backward interaction ’, IEEE Access, 2018, 6, pp. 43905 – 43919; Du D. Qi Y. Yu H. et al.: ‘ The unmanned aerial vehicle benchmark: object detection and tracking ’. Proc. of the European Conf. on Computer Vision (ECCV), Munich, Germany, 2018, pp. 370 – 386; Khan M. Ectors W. Bellemans T. et al.: ‘ Unmanned aerial vehicle‐based traffic analysis: a case study for shockwave identification and flow parameters estimation at signalized intersections ’, Remote Sens., 2018, 10, ( 3 ), p. 458; Zhu J. Sun K. Jia S. et al.: ‘ Urban traffic density estimation based on ultrahigh‐resolution UAV video and deep neural network ’, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 2018, 11, ( 12 ), pp. 4968 – 4981; Bewley A. Ge Z. Ott L. et al.: ‘ Simple online and realtime tracking ’. 2016 IEEE Int. Conf. on Image Processing (ICIP), Phoenix, AZ, USA, 2016, pp. 3464 – 3468; Lucas B.D. Kanade T. et al.: ‘ An iterative image registration technique with an application to stereo vision ’, 1981; Canny J.: ‘ A computational approach to edge detection ’, IEEE Trans. Pattern Anal. Mach. Intell., 1986, PAMI‐8, ( 6 ), pp. 679 – 698; Duda R.O. Hart P.E.: ‘ Use of the Hough transformation to detect lines and curves in pictures ’, 1971; Ester M. Kriegel H.‐P. Sander J. et al.: ‘ A density‐based algorithm for discovering clusters in large spatial databases with noise ’. Knowledge Discovery and Data Mining (KDD), Portland, OR, USA, 1996, pp. 226 – 231
DOI: 10.1049/iet-its.2019.0463
DOI: 10.7302/205
الاتاحة: https://hdl.handle.net/2027.42/166282
https://doi.org/10.1049/iet-its.2019.0463
https://doi.org/10.7302/205
Rights: IndexNoFollow
رقم الانضمام: edsbas.36F1049F
قاعدة البيانات: BASE
الوصف
تدمد:1751956X
17519578
DOI:10.1049/iet-its.2019.0463